CS 70Discrete Mathematics and Probability TheoryFall 2017Satish Rao and Kannan Ramchandran

DIS 1B

1 Triangle Inequality

Recall the triangle inequality, which states that for real numbers x_1 and x_2 ,

$$|x_1 + x_2| \le |x_1| + |x_2|.$$

Assuming the above inequality holds, use induction to prove the generalized triangle inequality:

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|.$$

2 Make It Stronger

Suppose that the sequence $a_1, a_2, ...$ is defined by $a_1 = 1$ and $a_{n+1} = 3a_n^2$ for $n \ge 1$. We want to prove that

 $a_n \leq 3^{2^n}$

for every natural number *n*.

- (a) Suppose that we want to prove this statement using induction, can we let our induction hypothesis be simply $a_n \leq 3^{2^n}$? Show why this does not work.
- (b) Try to instead prove the statement $a_n \le 3^{2^n-1}$ using induction. Does this statement imply what you tried to prove in the previous part?

3 Bit String

Prove that every positive integer n can be written with a string of 0s and 1s. In other words, prove that we can write

$$n = c_k \cdot 2^k + c_{k-1} \cdot 2^{k-1} + \dots + c_1 \cdot 2^1 + c_0 \cdot 2^0,$$

where $k \in \mathbb{N}$ and $c_k \in \{0, 1\}$.

4 Well-Ordering Principle

In this question, we will go over how the well-ordering principle can be derived from (strong) induction. Remember the well-ordering principle states the following:

For every non-empty subset *S* of the set of natural numbers \mathbb{N} , there is a smallest element $x \in S$; i.e.

$$\exists x : \forall y \in S : x \leq y.$$

- (a) What is the significance of *S* being non-empty? Does WOP hold without it? Assuming that *S* is not empty is equivalent to saying that there exists some number *z* in it.
- (b) Induction is always stated in terms of a property that can only be based on a natural number. What should the induction be based on? The length of the set S? The number x? The number y? The number z?
- (c) Now that the induction variable is clear, state the induction hypothesis. Be very precise. Do not leave out dangling symbols other than the induction variable. Ideally you should be able to write this in mathematical notation.
- (d) Verify the base case. Note that your base case does not just consist of a single set *S*.
- (e) Now prove that the induction works, by writing the inductive step.
- (f) What should you change so that the proof works by simple induction (as opposed to strong induction)?