1 Amaze Your Friends

You want to trick your friends into thinking you can perform mental arithmetic with very large numbers. What are the last digits of the following numbers?

(a) 11^{2017}

(b) 9^{10001}

(c) $3^{987654321}$

2 Combining Moduli

Suppose we wish to work modulo $n = 40$. Note that $40 = 5 \times 8$, with $\gcd(5, 8) = 1$. We will show that in many ways working modulo 40 is the same as working modulo 5 and modulo 8, in the sense that instead of writing down $c \pmod{40}$, we can just write down $c \pmod{5}$ and $c \pmod{8}$.

(a) What is $8 \pmod{5}$ and $8 \pmod{8}$? Find a number $a \pmod{40}$ such that $a \equiv 1 \pmod{5}$ and $a \equiv 0 \pmod{8}$.

(b) Now find a number $b \pmod{40}$ such that $b \equiv 0 \pmod{5}$ and $b \equiv 1 \pmod{8}$.
(c) Now suppose you wish to find a number \(c \) (mod 40) such that \(c \equiv 2 \) (mod 5) and \(c \equiv 5 \) (mod 8). Find \(c \) by expressing it in terms of \(a \) and \(b \).

(d) Repeat to find a number \(d \) (mod 40) such that \(d \equiv 3 \) (mod 5) and \(d \equiv 4 \) (mod 8).

(e) Compute \(c \times d \) (mod 40). Is it true that \(c \times d \equiv 2 \times 3 \) (mod 5), and \(c \times d \equiv 5 \times 4 \) (mod 8) for all integers \(c \) and \(d \)?

3 Baby Fermat

Assume that \(a \) does have a multiplicative inverse mod \(m \). Let us prove that its multiplicative inverse can be written as \(a^k \) (mod \(m \)) for some \(k \geq 0 \).

(a) Consider the sequence \(a, a^2, a^3, \ldots \) (mod \(m \)). Prove that this sequence has repetitions.

(b) Assuming that \(a^i \equiv a^j \) (mod \(m \)), where \(i > j \), what can you say about \(a^{i-j} \) (mod \(m \))?

(c) Prove that the multiplicative inverse can be written as \(a^k \) (mod \(m \)). What is \(k \) in terms of \(i \) and \(j \)?