1 Count It!

For each of the following collections, determine and briefly explain whether it is finite, countably infinite (like the natural numbers), or uncountably infinite (like the reals):

(a) \mathbb{N}, the set of all natural numbers.

(b) \mathbb{Z}, the set of all integers.

(c) \mathbb{Q}, the set of all rational numbers.

(d) \mathbb{R}, the set of all real numbers.

(e) The integers which divide 8.

(f) The integers which 8 divides.

(g) The functions from \mathbb{N} to \mathbb{N}.

(h) Computer programs that halt.

(i) Computer programs that always correctly tell if a program halts or not.

(j) Numbers that are the roots of nonzero polynomials with integer coefficients.

2 Countability Introduction

(a) Do $(0, 1)$ and $\mathbb{R}_+ = (0, \infty)$ have the same cardinality? If so, give an explicit bijection (and prove that it’s a bijection). If not, then prove that they have different cardinalities.

(b) Is the set of English strings countable? (Note that the strings may be arbitrarily long, but each string has finite length.) If so, then provide a method for enumerating the strings. If not, then use a diagonalization argument to show that the set is uncountable.

(c) Consider the previous part, except now the strings are drawn from a countably infinite alphabet \mathcal{A}. Does your answer from before change? Make sure to justify your answer.
3 Halting Problem Sanity Check

Suppose you want to prove that a program A is uncomputable. Which of the following should you do?

(a) Show that A can be solved if the halting problem could be solved.

(b) Show that the halting problem could be solved if A could be solved.

4 Hello World!

Determine the computability of the following tasks. If it’s not computable, write a reduction or self-reference proof. If it is, write the program.

(a) You want to determine whether a program P on input x prints "Hello World!". Is there a computer program that can perform this task? Justify your answer.

(b) You want to determine whether a program P prints "Hello World!" before running the kth line in the program. Is there a computer program that can perform this task? Justify your answer.

(c) You want to determine whether a program P prints "Hello World!" in the first k steps of its execution. Is there a computer program that can perform this task? Justify your answer.