CS 70Discrete Mathematics and Probability TheoryFall 2017Satish Rao and Kannan Ramchandran

DIS 6B

1 Count It!

For each of the following collections, determine and briefly explain whether it is finite, countably infinite (like the natural numbers), or uncountably infinite (like the reals):

- (a) \mathbb{N} , the set of all natural numbers.
- (b) \mathbb{Z} , the set of all integers.
- (c) \mathbb{Q} , the set of all rational numbers.
- (d) \mathbb{R} , the set of all real numbers.
- (e) The integers which divide 8.
- (f) The integers which 8 divides.
- (g) The functions from \mathbb{N} to \mathbb{N} .
- (h) Computer programs that halt.
- (i) Computer programs that always correctly tell if a program halts or not.
- (j) Numbers that are the roots of nonzero polynomials with integer coefficients.

2 Countability Introduction

- (a) Do (0,1) and $\mathbb{R}_+ = (0,\infty)$ have the same cardinality? If so, give an explicit bijection (and prove that it's a bijection). If not, then prove that they have different cardinalities.
- (b) Is the set of English strings countable? (Note that the strings may be arbitrarily long, but each string has finite length.) If so, then provide a method for enumerating the strings. If not, then use a diagonalization argument to show that the set is uncountable.
- (c) Consider the previous part, except now the strings are drawn from a countably infinite alphabet A. Does your answer from before change? Make sure to justify your answer.

3 Halting Problem Sanity Check

Suppose you want to prove that a program *A* is uncomputable. Which of the following should you do?

- (a) Show that *A* can be solved if the halting problem could be solved.
- (b) Show that the halting problem could be solved if *A* could be solved.

4 Hello World!

Determine the computability of the following tasks. If it's not computable, write a reduction or self-reference proof. If it is, write the program.

- (a) You want to determine whether a program P on input x prints "Hello World!". Is there a computer program that can perform this task? Justify your answer.
- (b) You want to determine whether a program *P* prints "Hello World!" before running the *k*th line in the program. Is there a computer program that can perform this task? Justify your answer.
- (c) You want to determine whether a program P prints "Hello World!" in the first k steps of its execution. Is there a computer program that can perform this task? Justify your answer.