CS 70 Discrete Mathematics and Probability Theory Fall 2017 Kannan Ramchandran and Satish Rao

DIS 12B

1 Sum of Independent Gaussians

In this question, we will introduce an important property of the Gaussian distribution: the sum of independent Gaussians is also a Gaussian.

Let X and Y be independent standard Gaussian random variables. Recall that the density of the standard Gaussian is

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right).$$

- (a) What is the joint density of *X* and *Y*?
- (b) Observe that the joint density of X and Y, $f_{X,Y}(x,y)$, only depends on the quantity $x^2 + y^2$, which is the distance from the origin. In other words, the Gaussian is *rotationally symmetric*. Next, we will try to find the density of X + Y. To do this, draw a picture of the Cartesian plane and draw the region $x + y \le c$, where *c* is a real number of your choice.
- (c) Now, rotate your picture clockwise by $\pi/4$ so that the line X + Y = c is now vertical. Redraw your figure. Let X' and Y' denote the random variables which correspond to the $\pi/4$ clockwise rotation of (X, Y) and express the new shaded region in terms of X' and Y'.
- (d) By rotational symmetry of the Gaussian, (X', Y') has the same distribution as (X, Y). Argue that X + Y has the same distribution as √2Z, where Z is a standard Gaussian. This proves the following important fact: *the sum of independent Gaussians is also a Gaussian*. Notice that X ~ N(0,1), Y ~ N(0,1) and Z ~ N(0,2). In general, if X and Y are independent *Gaussians, then X* + Y *is a Gaussian with mean* μ_X + μ_Y *and variance* σ_X² + σ_Y².

(e) Recall the CLT:

If $\{X_i\}_{i\in\mathbb{N}}$ is a sequence of i.i.d. random variables with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 < \infty$, then:

$$\frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}} \xrightarrow{\text{in distribution}} \mathcal{N}(0, 1) \qquad \text{as } n \to \infty$$

Prove that the CLT holds for the special case when the X_i are i.i.d. $\mathcal{N}(0,1)$.

2 Inequality Practice

- (a) *X* is a random variable such that X > -5 and $\mathbb{E}[X] = -3$. Find an upper bound for the probability of *X* being greater than or equal to -1.
- (b) You roll a die 100 times. Let Y be the sum of the numbers that appear on the die throughout the 100 rolls. Use Chebyshev's inequality to bound the probability of the sum Y being greater than 400 or less than 300.

3 Poisson Confidence Interval

You collect *n* samples (*n* is a positive integer) X_1, \ldots, X_n , which are i.i.d. and known to be drawn from a Poisson distribution (with unknown mean). However, you have a bound on the mean: from a confidential source, you know that $\lambda \leq 2$. Find a $1 - \delta$ confidence interval ($\delta \in (0, 1)$) for λ using Chebyshev's Inequality.