CS 70 Discrete Mathematics and Probability Theory Fall 2017 Kannan Ramchandran and Satish Rao

DIS 13A

1 Chebyshev's Inequality vs. Central Limit Theorem

Let *n* be a positive integer. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables with the following distribution:

$$\mathbb{P}[X_1 = -1] = \frac{1}{12};$$
 $\mathbb{P}[X_1 = 1] = \frac{9}{12};$ $\mathbb{P}[X_1 = 2] = \frac{2}{12}.$

(a) Calculate the expectations and variances of X_1 , $\sum_{i=1}^n X_i$, $\sum_{i=1}^n (X_i - \mathbb{E}[X_i])$, and

$$Z_n = \frac{\sum_{i=1}^n (X_i - \mathbb{E}[X_i])}{\sqrt{n/2}}.$$

(b) Use Chebyshev's Inequality to find an upper bound *b* for $\mathbb{P}[|Z_n| \ge 2]$.

- (c) Can you use *b* to bound $\mathbb{P}[Z_n \ge 2]$ and $\mathbb{P}[Z_n \le -2]$?
- (d) As $n \to \infty$, what is the distribution of Z_n ?
- (e) We know that if $Z \sim \mathcal{N}(0,1)$, then $\mathbb{P}[|Z| \leq 2] = \Phi(2) \Phi(-2) \approx 0.9545$. As $n \to \infty$, can you provide approximations for $\mathbb{P}[Z_n \geq 2]$ and $\mathbb{P}[Z_n \leq -2]$?

2 Binomial Concentration

Here, we will prove that the binomial distribution is *concentrated* about its mean as the number of trials tends to ∞ . Suppose we have i.i.d. trials, each with a probability of success 1/2. Let S_n be the number of successes in the first *n* trials (*n* is a positive integer), and define

$$Z_n := \frac{S_n - n/2}{\sqrt{n}/2}.$$

- (a) What are the mean and variance of Z_n ?
- (b) What is the distribution of Z_n as $n \to \infty$?
- (c) Use the bound $\mathbb{P}[Z > z] \le (\sqrt{2\pi}z)^{-1} e^{-z^2/2}$ when *Z* is normally distributed in order to bound $\mathbb{P}[S_n/n > 1/2 + \delta]$, where $\delta > 0$.
- 3 Correlation and Independence
- (a) What does it mean for two random variables to be uncorrelated?
- (b) What does it mean for two random variables to be independent?
- (c) Are all uncorrelated variables independent? Are all independent variables uncorrelated? If your answer is yes, justify your answer; if your answer is no, give a counterexample.

4 Covariance

We have a bag of 5 red and 5 blue balls. We take two balls from the bag without replacement. Let X_1 and X_2 be indicator random variables for the first and second ball being red. What is $cov(X_1, X_2)$? Recall that $cov(X_1, X_2) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$.