
CS 70 Discrete Mathematics and Probability Theory
Fall 2017 Kannan Ramchandran and Satish Rao

HW 13

Sundry
Before you start your homework, write down your team. Who else did you work with on this
homework? List names and email addresses. (In case of homework party, you can also just describe
the group.) How did you work on this homework? Working in groups of 3-5 will earn credit for
your "Sundry" grade.

Please copy the following statement and sign next to it:

I certify that all solutions are entirely in my words and that I have not looked at another student’s
solutions. I have credited all external sources in this write up.

1 Normal Distribution
Recall the following facts about the normal distribution: if X ∼N (µ,σ2), then the random vari-
able Z = (X −µ)/σ is standard normal, i.e. Z ∼N (0,1). There is no closed-form expression for
the CDF of the standard normal distribution, so we define Φ(z) = P[Z ≤ z]. You may express your
answers in terms of Φ(z).

The average jump of a certain frog is 3 inches. However, because of the wind, the frog does not
always go exactly 3 inches. A zoologist tells you that the distance the frog travels is normally
distributed with mean 3 and variance 1/4.

(a) What is the probability that the frog jumps more than 4 inches?

(b) What is the probability that the distance the frog jumps is between 2 and 4 inches?

2 Binomial CLT
In this question we will explicitly see why the central limit theorem holds for the binomial distri-
bution as the number of coin tosses grows.
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Let X be the random variable showing the total number of heads in n independent coin tosses.

(a) Compute the mean and variance of X . Show that µ = E[X ] = n/2 and σ2 = varX = n/4.

(b) Prove that P[X = k] =
(n

k

)
/2n.

(c) Show by using Stirling’s formula that

P[X = k]' 1√
2π

( n
2k

)k( n
2(n− k)

)n−k
√

n
k(n− k)

.

In general we expect 2k and 2(n− k) to be close to n for the probability to be non-negligible.

When this happens we expect
√

n
k(n− k)

to be close to
√

n
(n/2)× (n/2)

=
2√
n

. So replace

that part of the formula by 2/
√

n.

(d) In order to normalize X , we need to subtract the mean, and divide by the standard deviation.
Let Y = (X−µ)/σ be the normalized version of X . Note that Y is a discrete random variable.
Determine the set of values that Y can take. What is the distance d between two consecutive
values?

(e) Let X = k correspond to the event Y = t. Then X ∈ [k− 0.5,k + 0.5] corresponds to Y ∈
[t−d/2, t +d/2]. For conceptual simplicity, it is reasonable to assume that the mass at point t
is distributed uniformly on the interval [t−d/2, t +d/2]. We can capture this with the idea of
a “probability density” and say that the probability density on this interval is just P[Y = t]/d =
P[X = k]/d.

Compute k as a function of t. Then substitute that for k in the approximation you have from
part c to find an approximation for P[Y = t]/d. Show that the end result is equivalent to:

1√
2π
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t√
n
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n
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√

n]−n/2

(f) As you can see, we have expressions of the form (1+x)1+x in our approximation. To simplify
them, write (1+x)1+x as exp((1+x) ln(1+x)) and then replace (1+x) ln(1+x) by its Taylor
series.

The Taylor series up to the x2 term is (1+ x) ln(1+ x)' x+ x2/2+ · · · (feel free to verify this
by hand). Use this to simplify the approximation from the last part. In the end you should get
the familiar formula that appears inside the CLT:

1√
2π

exp
(
−t2

2

)
.

(The CLT is essentially taking a sum with lots of tiny slices and approximating it by an integral
of this function. Because the slices are tiny, dropping all the higher-order terms in the Taylor
expansion is justified.)
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3 Why Is It Gaussian?
Let X be a normally distributed random variable with mean µ and variance σ2. Let Y = aX + b,
where a and b are non-zero real numbers. Show explicitly that Y is normally distributed with mean
aµ + b and variance a2σ2. (Your proof should be more explicit than what’s in the class notes.
One approach is to start with the cumulative distribution function of Y and use it to derive the
probability density function of Y .)

4 Deriving Chebyshev’s Inequality
Recall Markov’s Inequality, which applies for non-negative X and α > 0:

P[X ≥ α]≤ E[X ]

α

Use an appropriate substitution for X and α to derive Chebyshev’s Inequality, where µ denotes the
expected value of Y .

P[|Y −µ| ≥ k]≤ var(Y )
k2

5 Markov’s Inequality and Chebyshev’s Inequality
A random variable X has variance var(X) = 9 and expectation E[X ] = 2. Furthermore, the value
of X is never greater than 10. Given this information, provide either a proof or a counterexample
for the following statements.

(a) E
[
X2]= 13.

(b) P[X = 2]> 0.

(c) P[X ≥ 2] = P[X ≤ 2].

(d) P[X ≤ 1]≤ 8/9.

(e) P[X ≥ 6]≤ 9/16.

(f) P[X ≥ 6]≤ 9/32.

6 Practical Confidence Intervals
(a) It’s New Year’s Eve, and you’re re-evaluating your finances for the next year. Based on previ-

ous spending patterns, you know that you spend $1500 per month on average, with a standard
deviation of $500, and each month’s expenditure is independently and identically distributed.
As a poor college student, you also don’t have any income. How much should you have in
your bank account if you don’t want to go broke this year, with probability at least 95%?
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(b) As a UC Berkeley CS student, you’re always thinking about ways to become the next billion-
aire in Silicon Valley. After hours of brainstorming, you’ve finally cut your list of ideas down
to 10, all of which you want to implement at the same time. A venture capitalist has agreed
to back all 10 ideas, as long as your net return from implementing the ideas is positive with at
least 95% probability.

Suppose that implementing an idea requires 50 thousand dollars, and your start-up then suc-
ceeds with probability p, generating 150 thousand dollars in revenue (for a net gain of 100
thousand dollars), or fails with probability 1− p (for a net loss of 50 thousand dollars). The
success of each idea is independent of every other. What is the condition on p that you need to
satisfy to secure the venture capitalist’s funding?

(c) One of your start-ups uses error-correcting codes, which can recover the original message as
long as at least 1000 packets are received (not erased). Each packet gets erased independently
with probability 0.8. How many packets should you send such that you can recover the mes-
sage with probability at least 99%?

7 Quadratic Regression
In this question, we will find the best quadratic estimator of Y given X . First, some notation: let µi
be the ith moment of X , i.e. µi = E[X i]. Also, define β1 = E[XY ] and β2 = E[X2Y ]. For simplicity,
we will assume that E[X ] = E[Y ] = 0 and E[X2] = E[Y 2] = 1. (Note that this poses no loss of
generality, because we can always transform the random variables by subtracting their means and
dividing by their standard deviations.) We claim that the best quadratic estimator of Y given X is

Ŷ =
1

µ2
3 −µ4 +1

(aX2 +bX + c)

where

a = µ3β1−β2,

b = (1−µ4)β1 +µ3β2,

c =−µ3β1 +β2.

Your task is to prove the Projection Property for Ŷ .

(a) Prove that E[Y − Ŷ ] = 0.

(b) Prove that E[(Y − Ŷ )X ] = 0.

(c) Prove that E[(Y − Ŷ )X2] = 0.

Any quadratic function of X is a linear combination of 1, X , and X2. Hence, these equations
together imply that Y−Ŷ is orthogonal to any quadratic function of X , and so Ŷ is the best quadratic
estimator of Y .
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8 LLSE and Graphs
Consider a graph with n vertices numbered 1 through n, where n is a positive integer≥ 2. For each
pair of distinct vertices, we add an undirected edge between them independently with probability
p. Let D1 be the random variable representing the degree of vertex 1, and let D2 be the random
variable representing the degree of vertex 2.

(a) Compute E[D1] and E[D2].

(b) Compute var(D1).

(c) Compute cov(D1,D2).

(d) Using the information from the first three parts, what is L(D2 | D1)?
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