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1 Markov Chains!

1.1 Some definitions

Before we define what a Markov chain is, we first need to define stochastic matrices.

Definition 1. An n× n right stochastic matrix P is a square matrix that satisfies the following:

1. P (i, j) ≥ 0 ∀i, j ∈ {1, 2, . . . , n}

2. ∀i ∈ {1, 2, . . . , n},
∑n

j=1 P (i, j) = 1.

In other words, a right stochastic matrix is a square matrix with non-negative entries and row-sum
equal to 1 for each row. We are now able to state the definition of a Markov chain.

Definition 2. A (finite) Markov chain M is a 4-tuple (X , π0, P, {Xn}∞n=0) consisting of

1. A finite set of states X = {1, 2, . . . ,K}.

2. A probability distribution π0 : X → [0, 1] such that
∑

i∈X π0(i) = 1.

3. A K ×K right stochastic matrix P .

4. A sequence of random variables {Xn}∞n=0 satisfying

• ∀i ∈X , P(X0 = i) = π0(i)

• ∀i, j ∈X , P(Xn+1 = j|X0, X1, . . . , Xn = i) = P (i, j).

There’s quite a bit going on in this definition, so let’s break it down to understand what’s going on.
Intuitively, a (finite) Markov chain represents a probabilistic walk through a given state space X .
At time t = 0, the probability that we find ourselves starting in state i ∈X is given by π0(i). Our
stochastic matrix P encodes the probability of transitioning from state i to state j for i, j ∈X . In
other words, given that we are at state i at time t = n, the probability that we move to state j at
time t = n+ 1 is P (i, j).

It is important to note that we “forget” about where we were at times t = 0, 1, . . . , n − 1: the
probabilities of our next step only depend on the current state. Finally, the sequence {Xn}∞n=0
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represents the possible locations we may be at any point in time. For example, the random variable
X0 is our position at the start, and Xi denotes our position at time i. Of course, we have that
range(Xi) ⊆X for i ∈ N.

1.2 A simple example
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Consider the Markov chain represented by the figure above, and suppose that our initial distribution
is given by π0(1) = 1, π0(2) = π0(3) = 0. We have that X = {1, 2, 3}, and finally

P =

0.5 0.5 0
0 0.5 0.5
0.5 0 0.5


Let’s compute a few things using our example above. By our assumptions, we know that at time
t = 0, we are guaranteed to start at state 1. Suppose we want to know the amount of time we
expect to take to move from state 1 to state 3. Let’s begin by denoting the expected amount of
time to move from state i to state j by β(i, j). Our goal is to compute β(1, 3).

A bit of thought gives us that

β(1, 3) = 1 +
1

2
(β(1, 3) + β(2, 3))

Why? We have yet to reach our goal, so we are guaranteed to have to move at least once. Further-
more, with probability 1

2 we move to state 2 and from there expect to take β(2, 3) steps to move to
state 3, or we stay in state 1 (also with probability 1

2) and from there expect to take β(1, 3) steps
to get to state 3. Similarly, we see that

β(2, 3) = 1 +
1

2
(β(2, 3) + β(3, 3))
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and
β(3, 3) = 0,

which we recognize as a system of three linear equations in three variables. Solving this system, we
see that

β(1, 3) = 4

β(2, 3) = 2

β(3, 3) = 0,

so we expect 4 units of time to pass before moving from state 1 to state 3.

We conclude by noting that an alternate way of viewing this problem would be to simply view it
as calculating the expectation of X = X1 + X2, where X1, X2 ∼ Geom(12). This is because the
only way to get from state 1 to state 3 is to first move to state 2, and also there is no way of going
“backwards”. Thus, the expected number of steps to move from state 1 to 2 is 2, which is also the
expected number of steps to move from state 2 to 3.
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