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In my discussion today we tried to go over Chinese Remainder Theorem and how it
can be applied in proving the correctness of RSA. I went over time a little bit and didn’t
finish, so I decided to write it up. This note should provide an introduction to Chinese
Remainder Theorem, as well as the basic proof.

1 Let’s start from RSA

Let’s first do a brief recap of RSA to motivate the need for Chinese Remainder Theorem.
Feel free to skip this section and jump to the theorem itself.

In RSA encryption, we have N = pq where p and q are two prime numbers. Then,
the public key e and private key d are selected such that e ≡ d−1 (mod (p− 1)(q − 1)).
Now, suppose Alice wants to send Bob a secure message, Bob first sent the public key
(e,N) to Alice. Then, for message x, Alice sends xe (mod N) to Bob, and once Bob
received the encrypted message y, he decrypts the message by computing yd (mod N).

An obvious question now is, is this algorithm even correct? Does raising the received
message y to the power of d guarantee you the original message back? This led us to
the proof of RSA’s correctness. That is, we want to show (xe)d ≡ xde ≡ x (mod N).

Note that since e and d are inverses modulo (p−1)(q−1), de ≡ 1 (mod (p−1)(q−1)).
Therefore, we have:

xde ≡ xk(p−1)(q−1)+1 (mod pq)

Now, according to Fermat’s Little Theorem, since p is prime and 1 ≤ x ≤ p, we have
xp−1 ≡ 1 (mod p). Therefore, we have:

xk(p−1)(q−1)+1 ≡ x · xk(p−1)(q−1)

≡ x · 1k(q−1)

≡ x (mod p)

And similarly:
xk(p−1)(q−1)+1 ≡ x · xk(p−1)(q−1)

≡ x · 1k(p−1)

≡ x (mod q)

But we are not done yet! We want to show that x(p−1)(q−1)+1 ≡ x (mod pq), but we
only show that it works for (mod p) and (mod q). How do we proceed? The proof
in lecture note proceeded by subtracting x from both sides of the equation, which is
actually the proof of a special case of the Chinese Remainder Theorem, which will
be described in the next section.
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2 The Chinese Remainder Theorem

Let’s start with the theorem itself. An example is given at the end.

Chinese Remainder Theorem. if n1, n2...nk are pairwise coprime, there exists a
unique x (mod N) s.t.

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

......

x ≡ ak (mod nk)

where N = n1n2...nk

Proof. The proof of the theorem consists of 2 part: existence and uniqueness
Uniqueness: Proof by contradiction. Suppose that for all any ∃x1 6= x2 s.t. ∀1 ≤ i ≤

k, x1 ≡ x2 ≡ ai (mod ni). Then ∀1 ≤ i ≤ k, x1−x2 ≡ 0 (mod ni). Then since n1, n2...nk

are coprime, they don’t share any common factor together, which means x1 − x2 ≡ 0
(mod n1n2...nk). This implies that x1 and x2 differ by at least N , contradiction.

Note that the uniqueness proof is very similar to the bijection proof in proving
Fermat’s Little Theorem!

Existence: We give a constructive proof. We start with k = 2, i.e. there are only 2
numbers, n1, n2, and we want to find an x s.t. x ≡ a1 (mod n1) and x ≡ a2 (mod n2).

Since we know n1 and n2 are coprime, running extended-gcd algorithm on n1 and
n2 will give us m1 and m2

1 such that:

m1n1 + m2n2 = 1 (1)

Now, construct x s.t.:
x ≡ a1m2n2 + a2m1n1 (2)

To find the remainder of x modulo n1, we have:

x ≡ a1m2n2 + a2m1n1

≡ a1(1−m1n1) + a2m1n1

≡ a1 − a1m1n1 + a2m1n1

≡ a1 (mod n1)

Where the first step follows from equation (1). Similarly, we have:

x ≡ a1m2n2 + a2m1n1

≡ a1m2n2 + a2(1−m2n2)

≡ a1m2n2 + a2 − a2m2n2

≡ a2 (mod n2)

1Review the lecture note on extended-gcd algorithm if this doesn’t make sense.
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Which shows that x indeed satisfies the conditions! To extend the case from k = 2
to any arbitrary k, you can either follow a proof by induction, or generalize the above
construction process. 2

So, suppose we want to find an x such that3:

x ≡ 3 (mod 5)

x ≡ 4 (mod 8)

The extended gcd algorithm gives us:

5 · 5 + 8 · (−3) = 1

So according to the construction, we have:

x = 3 · 8 · (−3) + 4 · 5 · 5 = −72 + 100 = 28

Which does satisfy the condition.

3 Back To RSA

Let’s go back to where we started from. In the proving RSA’s correctness, we found
that

xk(p−1)(q−1)+1 ≡ x (mod p)

xk(p−1)(q−1)+1 ≡ x (mod q)
(3)

Applying the constructive process, assuming that extended GCD algorithm gives us
m1p + m2q = 1, then the number that satisfies (3) would be xm2q + xm1p ≡ x(m1p +
m2q) ≡ x. This means that xk(p−1)(q−1)+1 (mod pq) is indeed x. That completes our
proof about RSA’s correctness.

2See https://en.wikipedia.org/wiki/Chinese_remainder_theorem for a complete discussion of the
theorem and its proof.

3actually, you saw this example back in discussion 4(b) problem 5

https://en.wikipedia.org/wiki/Chinese_remainder_theorem
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