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Other apps. we’ll see: codes based on polynomials



Back to secret sharing: idea of the day

Two points make a line.

Lots of lines go through one point.

Secret message is represented as the y-intercept.

Let’s recall how polynomials work.
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Polynomials

A polynomial

P(x) = ad xd + ad−1xd−1 · · ·+ a0.

is specified by coefficients ad , . . .a0.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: a1, . . . ,ad ∈ℜ, use x ∈ℜ.

Polynomials P(x) with arithmetic modulo p: 1 ai ∈ {0, . . . ,p−1}
and

P(x) = ad xd + ad−1xd−1 · · ·+ a0 (mod p),

for x ∈ {0, . . . ,p−1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF (p) = ({0, . . . ,p−1},+ (mod p),∗ (mod p)).
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Polynomial: P(x) = adx4+ · · ·+a0

Line:P(x) = a1x + a0

= mx + b

x

P(x)

P(x) = .5x + 0

P(x) =−1x + 3

P(x) = 0.5x2−x + 0.1

P(x) =−.3x2 + 1x + .1

Parabola: P(x) = a2x2 + a1x + a0 = ax2 + bx + c
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Polynomial: P(x) = adx4+ · · ·+a0 (mod p)

x

P(x)

3x + 1 (mod 5)

x + 2 (mod 5)

Finding an intersection.
x + 2≡ 3x + 1 (mod 5)
=⇒ 2x ≡ 1 (mod 5)

=⇒ x ≡ 3 (mod 5)

3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!
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Two points make a line.

Fact: There is exactly 1 polynomial having degree ≤ d containing
d + 1 points. 2

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: There is exactly 1 polynomial having
degree ≤ d (with arithmetic modulo prime p) containing d + 1 pts.

2Points with different x values.
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3 points determine a parabola.

P(x) = 0.5x2−x + 1

P(x) =−.3x2 + 1x + .5

Fact: Exactly 1 polynomial having degree≤ d polynomial contains
d + 1 points. 3

3Points with different x values.
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2 points not enough.

Question: How many parabolas exist that contain exactly 2 distinct
points?

P(x) =−.3x2 + 1x + .5

P(x) = .2x2− .5x + 1.5

P(x) =−.6x2 + 1.9x− .1

A parabola P(x) containing 2 blue points can contain any (0,y)!
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Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 polynomial having degree ≤ d
with arithmetic modulo prime p contains d + 1 pts.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and random a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Robustness: Any k shares gives secret.
Knowing k pts =⇒ only one P(x) =⇒ evaluate P(0).
Secrecy: Any k −1 shares give nothing.
Knowing ≤ k −1 pts =⇒ any P(0) is possible.
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Knowing ≤ k −1 pts =⇒ any P(0) is possible.
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From d +1 points to degree d polynomial?

For a line, a1x + a0 = mx + b contains points (1,3) and (2,4).

P(1) = m(1) + b ≡ m + b ≡ 3 (mod 5)

P(2) = m(2) + b ≡ 2m + b ≡ 4 (mod 5)

Subtract first from second..

m + b ≡ 3 (mod 5)

m ≡ 1 (mod 5)

Backsolve: b ≡ 2 (mod 5). Secret is 2.

And the line is...
x + 2 mod 5.
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Quadratic

For a quadratic polynomial, a2x2 + a1x + a0 hits (1,2); (2,4); (3,0).

Plug in points to find equations.

P(1) = a2 + a1 + a0 ≡ 2 (mod 5)

P(2) = 4a2 + 2a1 + a0 ≡ 4 (mod 5)

P(3) = 4a2 + 3a1 + a0 ≡ 0 (mod 5)

a2 + a1 + a0 ≡ 2 (mod 5)

3a1 + 2a0 ≡ 1 (mod 5)

4a1 + 2a0 ≡ 2 (mod 5)

Subtracting 2nd from 3rd yields: a1 = 1.
a0 = (2−4(a1))2−1 = (−2)(2−1) = (3)(3) = 9≡ 4 (mod 5)
a2 = 2−1−4≡ 2 (mod 5) .

So polynomial is 2x2 + 1x + 4 (mod 5)
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In general..

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk ).

Solve...

ak−1xk−1
1 + · · ·+ a0 ≡ y1 (mod p)

ak−1xk−1
2 + · · ·+ a0 ≡ y2 (mod p)

·
·

ak−1xk−1
k + · · ·+ a0 ≡ yk (mod p)

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 polynomial having degree ≤ d
with arithmetic modulo prime p contains d + 1 pts.
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Another Construction: Lagrange Interpolation!

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

Try (x−2)(x−3) (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
∆1(x) = (x−2)(x−3)(3) (mod 5) contains (1,1); (2,0); (3,0).

∆2(x) = (x−1)(x−3)(4) (mod 5) contains (1,0);(2,1);(3,0).

∆3(x) = (x−1)(x−2)(3) (mod 5) contains (1,0);(2,0);(3,1 ).

But wanted to hit (1,3); (2,4); (3,0)!
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We will work with polynomials with arithmetic modulo p.



Delta Polynomials: Concept.

For set of x-values, x1, . . . ,xd+1.

∆i (x) =


1, if x = xi .

0, if x = xj for j 6= i .
?, otherwise.

(1)

Given d + 1 points, use ∆i functions to go through points?
(x1,y1), . . . , (xd+1,yd+1).

Will y1∆1(x) contain (x1,y1)?

Will y2∆2(x) contain (x2,y2)?

Does y1∆1(x) + y2∆2(x) contain
(x1,y1)? and (x2,y2)?

See the idea? Function that contains all points?

P(x) = y1∆1(x) + y2∆2(x) . . .+ yd+1∆d+1(x).
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Example.

∆i (x) =
∏j 6=i (x−xj )

∏j 6=i (xi−xj )
.

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

∆1(x) contains (1,1) and (3,0).

∆1(x) = (x−3)
1−3 = x−3

−2
= 2(x−3) = 2x−6 = 2x + 4 (mod 5).

For a quadratic, a2x2 + a1x + a0 hits (1,3); (2,4); (3,0).

Work modulo 5.

Find ∆1(x) polynomial contains (1,1); (2,0); (3,0).

∆1(x) = (x−2)(x−3)
(1−2)(1−3) = (x−2)(x−3)

2 = 3(x−2)(x−3)

= 3x2 + 3 (mod 5)

Put the delta functions together.
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In general.

Given points: (x1,y1); (x2,y2) · · ·(xk ,yk ).

∆i (x) =
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∏j 6=i (xi −xj )
.

Numerator is 0 at xj 6= xi .

Denominator makes it 1 at xi .

And..
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hits points (x1,y1); (x2,y2) · · ·(xk ,yk ).

Construction proves the existence of the polynomial!
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Where have we seen this concept before? (Hint: CRT)

My love is won. Zero and one. Nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.
x = au + bv , where
u = 0 (mod n) and u = 1 (mod m)
v = 1 (mod n) and v = 0 (mod m)
Similar deal here with the Delta polynomials in Lagrange
interpolation.
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Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d +1 points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x)−P(x) has d + 1 roots and is degree d .
Contradiction.

Must prove Roots fact.
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Polynomial Division.
Divide 4x2−3x + 2 by (x−3) modulo 5.

4 x

+ 4 r 4

-----------------
x - 3 ) 4xˆ2 - 3 x + 2

4xˆ2 - 2x
----------

4x + 2
4x - 2
-------

4

4x2−3x + 2≡ (x−3)(4x + 4) + 4 (mod 5)

In general, divide P(x) by (x−a) gives Q(x) and remainder r .

That is, P(x) = (x−a)Q(x) + r
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Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x−a) has remainder 0:
P(x) = (x−a)Q(x).

Proof: P(x) = (x−a)Q(x) + r .
Plugin a: P(a) = r .
It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r1, . . . , rd then
P(x) = c(x− r1)(x− r2) · · ·(x− rd ).
Proof Sketch: By induction.

Induction Step: P(x) = (x− r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis.

d + 1 roots implies degree is at least d + 1.

Roots fact: Any degree d polynomial has at most d roots.
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Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a finite field denoted by Fm or
GF (m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.
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Secret Sharing

Modular Arithmetic Fact: There exists exactly one polynomial
having degree ≤ d over GF (p), P(x), that hits d + 1 points.

Shamir’s k out of n Scheme:
Secret s ∈ {0, . . . ,p−1}

1. Choose a0 = s, and randomly a1, . . . ,ak−1.

2. Let P(x) = ak−1xk−1 + ak−2xk−2 + · · ·a0 with a0 = s.

3. Share i is point (i ,P(i) mod p).

Robustness: Any k knows secret.
Knowing k pts, only one P(x), evaluate P(0).
Secrecy: Any k −1 knows nothing.
Knowing ≤ k −1 pts, any P(0) is possible.
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Minimality.

Need p > n to hand out n shares: P(1) . . .P(n).

For b-bit secret, must choose a prime p > 2b.

Theorem: There is always a prime between n and 2n.
Chebyshev said it,
And I say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k −1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).
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Runtime.

Runtime: polynomial in k , n, and logp.

1. Evaluate degree k −1 polynomial n times using logp-bit
numbers.

2. Reconstruct secret by solving system of k equations using
logp-bit arithmetic.
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A bit more counting.

What is the number of degree d polynomials over GF (m)?

I md+1: d + 1 coefficients from {0, . . . ,m−1}.
I md+1: d + 1 points with y -values from {0, . . . ,m−1}

Infinite number for reals, rationals, complex numbers!
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