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Share secret among n people.

Secrecy: Any k — 1 knows nothing.
Robustness: Any k knows secret.
Efficient: Minimize storage.

lllustration: need at least 3 keys to open a bank vault



Other apps. we’ll see: codes based on polynomials
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Polynomials

A polynomial

P(X) = adxd+ad,1xd’1 .

-+ ap.
is specified by coefficients ay, ... ag-

P(x) contains point (a,b) if b= P(a).

Polynomials over reals: aj,...,ay € R, use x € R.

Polynomials P(x) with arithmetic modulo p: ' a; < {0,...,p—1}
and

d-1 .

P(x)=agx?+ag_1x?'---+ay (mod p),

forxe€{0,...,p—1}.

1A field is a set of elements with addition and multiplication operations,
with inverses. GF(p) = ({0,...,p—1},+ (mod p),* (mod p)).
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Polynomial: P(x) = agx*+---+ ag

Line:P(x)=ajx+ayp=mx+b

P(x)

/

P(x)=0.5x% —x+0.1

V4
A

P(x) = —.3x% +1x+.1

Parabola: P(x) = apx®+aix+ay = ax®>+bx+c¢
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Polynomial: P(x) = agx*+---+ag (mod p)
P(x)

Finding an intersection.

x+2=3x+1 (mod 5)

= 2x=1 (mod 5) = x =3 (mod 5)
3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!
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Two points make a line.

Fact: There is exactly 1 polynomial having degree < d containing
d+1 points. 2

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: There is exactly 1 polynomial having
degree < d (with arithmetic modulo prime p) containing d + 1 pts.

2Points with different x values.
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3 points determine a parabola.

P(x)=0.5x% — x +1

o P(x)=-3x2+1x+.5

Fact: Exactly 1 polynomial having degree< d polynomial contains
d+1 points. 3

3Points with different x values.
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Question: How many parabolas exist that contain exactly 2 distinct
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2 points not enough.
Question: How many parabolas exist that contain exactly 2 distinct
points?

P(x) = .2x? - 5x4+1.5

I

v

P(x)=—-3x?+1x+.5

P(x) = —.6x%+1.9x — .1



2 points not enough.

Question: How many parabolas exist that contain exactly 2 distinct

points?

P(x)=.2x> - 5x+1.5

v

P(x)=—-.3x>+1x+.5

P(x) = —.6x%+1.9x — .1

A parabola P(x) containing 2 blue points can contain any (0, y)!
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From d + 1 points to degree d polynomial?

For a line, a1 x + ap = mx + b contains points (1,3) and (2,4).

P(1)=m(1)+b = m+b=3 (mod 5)
P2)=m(2)+b = 2m+b=4 (mod 5)

Subtract first from second..

m+b = 3 (mod 5)
m 1 (mod 5)

Backsolve: b=2 (mod 5). Secret is 2.

And the line is...
X+2 modb>5.



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=ax+ai+a = 2 (modb5)



Quadratic
For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4ax+2a1+a = 4 (mod>5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

a+ay+a 2 (mod 5)
3a1+2a = 1 (mod5)
4a;+2a = 2 (mod5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+23 = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

a+ay+a 2 (mod 5)
3a1+2a = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.
a = (2—4(ap))2"



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

a=(2-4(a))2 ' =(-2)(2°")



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

a0 =(2-4(a))27' =(-2)(27) =(3)(3)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a,+2a;+a = 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ap=(2-4(a1))27' =(-2)(27") = (3)(3) =9=4 (mod 5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2a;+ay = 4 (mod5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ay=(2—-4(ay))27"=(-2)(27")=(38)(8) =9 =4 (mod 5)
a=2—-1-4=2 (mod 5)



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2a;+ay = 4 (mod5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ay=(2—-4(ay))27"=(-2)(27")=(38)(8) =9 =4 (mod 5)
a=2—-1-4=2 (mod 5).



Quadratic

For a quadratic polynomial, a,x2 + a1 x + ag hits (1,2);(2,4);(3,0).
Plug in points to find equations.

P(1)=a+ai+a = 2 (mod}5)
P(2)=4a>+2ay+ag 4 (mod 5)
P(3)=4a>+3a1+a = 0 (mod5)

&+ar+a 2 (mod 5)
3a;+2a; = 1 (mod5)
4a;+2a = 2 (mod5)

Subtracting 2nd from 3rd yields: a; = 1.

ap=(2-4(a1))27' =(-2)(27") = (3)(3) =9=4 (mod 5)

a=2—-1-4=2 (mod 5).

So polynomial is 2x2 + 1x+4 (mod 5)



In general..

Given points: (x1,¥1); (X2, ¥2) - (Xk, Yk )-



In general..

Given points: (x1,¥1); (X2, ¥2) - (Xk, Yk )-

Solve...

ak— 1X1 "tota =

ak_ 1X2 . +a =

ag_ 1Xk + -+ay =

y1 (mod p)
y2 (mod p)

Yk (mod p)



In general..

Given points: (x1,y1); (X2, ¥2) -

Solve...

Ak 1X1

ak— 1X2

ag— 1Xk

Will this always work?

'(kayk)'
Ty -+a =
. ~+ay =
Ty t+ay =

y1 (mod p)
y2 (mod p)

Yk (mod p)



In general..

Given points: (x1,¥1); (X2, ¥2) - (Xk, Yk )-
Solve...

a1x '+ +a = y (mod p)
a1 x5 ' +---+ay = y» (mod p)
axk 1xf ' +-+a = yx (mod p)

Will this always work?
As long as solution exists and it is unique! And...



In general..

Given points: (x1,¥1); (X2, ¥2) - (Xk, Yk )-
Solve...

a1x '+ +a = y (mod p)
a1 x5 ' +---+ay = y» (mod p)
axk 1xf ' +-+a = yx (mod p)

Will this always work?
As long as solution exists and it is unique! And...



In general..

Given points: (x1,¥1); (X2, ¥2) - (Xk, Yk )-
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Proof of at least one polynomial:
Given points: (x1,1): (X2, ¥2) - (Xg+1, Yd+1)-
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Example.
[jzi(x=x))
Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?
Work modulo 5.
A4(x) contains (1,1) and (3,0).

_3 _
Aq(x) = (:_3) = %

=2(x—3)=2x—-6=2x+4 (mod 5).
For a quadratic, a,x® + a1 x + ag hits (1,3);(2,4);(3,0).
Work modulo 5.
Find A¢(x) polynomial contains (1,1);(2,0);(3,0).
A1) = (g = S =8(x—2)(x-3)
=3x2+43 (mod 5)
Put the delta functions together.
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In general.

Given points: (x1,y1); (X2, ¥2) -+ - (X, Yk)-

. . X — X
A,’(X) _ Hj;él( /) )
[T (Xi — X;)
Numerator is 0 at x; # x;.
Denominator makes it 1 at x;.

And..

P(x) = y181(x)+ ya Do (X) + - - + Yk Ak(x).

hits points (x1,y1); (X2, ¥2) - (Xk, Yk)-
Construction proves the existence of the polynomial!
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Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d + 1 points.
Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) — P(x) has d+ 1 roots and is degree d.

Contradiction.

Must prove Roots fact.
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Polynomial Division.
Divide 4x2 — 3x +2 by (x —3) modulo 5.

4x"2 - 2x
ix + 2
1x - 2

4x2 - 3x+2=(x—3)(4x+4)+4 (mod 5)
In general, divide P(x) by (x — a) gives Q(x) and remainder r.
Thatis, P(x)=(x—a)Q(x)+r
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Only d roots.

Lemma 1: P(x) has root aiff P(x)/(x — a) has remainder 0:
P(x) = (x —a)Q(x).

Proof: P(x) = (x—a)Q(x)+r.

Plugin a: P(a)=r.

It is a root if and only if r = 0.

]
Lemma 2: P(x) has d roots; ry,...,ry then
P(x) = c(x —ri)(x—r2)--- (X = Ig).
Proof Sketch: By induction.
Induction Step: P(x) = (x —r1)Q(x) by Lemma 1. Q(x) has smaller
degree so use the induction hypothesis. O

d+ 1 roots implies degree is at least d+ 1.
Roots fact: Any degree d polynomial has at most d roots.
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Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime mis a finite field denoted by F, or
GF(m).

Intuitively, a field is a set with operations corresponding to addition,
multiplication, and division.



History lesson: Evariste Galois (1811-1832)

EVARISTE GALOIS

Known for:
» well... Galois’ theory
» maths / algebra

Trivia:

» was challenged to a duel
he knew he couldn’t win

» stayed up all night
writing maths?

» lost the duel




History lesson: Evariste Galois (1811-1832

Evariste Galois

From Wikipedia, the free encyciopedia

"Galois" redirects here. For other uses, see Gallois (disambiguation).
Evariste Galois (Frencn: [evaist ga'wal; 25 October 1811 — 31 May 1832) was a French mathematician born in Bourg-la-Reine. While stillin his teens, he was able to
determine a necessary and suffcient condition for a polynomial to be solvable by radicals, thereby solving a problem standing for 350 years. His work laid the foundations
for Galois theory and group theory, two major branches of abstract algebra, and the subfield of Galois connections. He died at age 20 from wounds suffered in a duel.

Contents [nide]
1 Lite
1.1 Early lfe
1.2 Budding mathematician
1.3 Politial firebrand

1.4 Final days
2 Contributions to mathematics

2.1 Algebra

2.2 Galois theory

2.3 Analysis #

2.4 Continued fractions W AR
3 See also Aportrait of Evariste Galois aged about 15
4 Notes Bom 25 October 1811
e Bourg-la-Reine, French Empire

Died 31 May 1832 (aged 20

BEETID e Kngdom e

Nationality French
Alma mater Ecole préparatoire (no degree)
Known for Work on the theary of equations.
and Abelian integrals
Sclentific career
Fields  Mathematics
Signature

Life [edt]

Early life |[edit]
Galois was born on 25 October 1811 to Nicolas-Gabriel Galols and Adélaide-Marie (born Demante).!'] His father was a Republican and was head of Bourg-la-Reine's
liberal party. His father became mayor of the village after Louis XVIIl returned to the throne in 1814, His mother, the daughter of a jurist, was a fluent reader of Latin and
classical literature and was responsible for her son's education for his first twelve years. At the age of 10, Galois was offered a place at the college of Reims, but his E o .-
(2i—

mother preferred to keep him at home.
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Minimality.

Need p > nto hand out n shares: P(1)...P(n).
For b-bit secret, must choose a prime p > 2°.

Theorem: There is always a prime between nand 2n.
Chebyshev said it,
And | say it again,
There is always a prime
Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.
With k shares, reconstruct polynomial, P(x).

With k — 1 shares, any of p values possible for P(0)!
(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(/).



Runtime.



Runtime.

Runtime: polynomial in k, n, and logp.

1. Evaluate degree k — 1 polynomial n times using log p-bit
numbers.

2. Reconstruct secret by solving system of k equations using
log p-bit arithmetic.
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A bit more counting.

What is the number of degree d polynomials over GF(m)?

» mat!: d+1 coefficients from {0,...,m—1}.

» m?*t1: d+1 points with y-values from {0,...,m—1}

Infinite number for reals, rationals, complex numbers!



