CS70: Lecture 11. Outline.

1. Public Key Cryptography
2. RSA system

2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat’s Theorem.
2.3 Construction.

Lots of Mods

x=5 (mod 7) and x =3 (mod 5).
What is x (mod 35)?

Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!

If x=6 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.
Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: Unique solution (mod mn).
Proof:
Consider u=n(n~" (mod m)).

u=0 (mod n) u=1 (mod m)
Consider v =m(m~" (mod n)).

v=1 (mod n) v=0 (

Let x = au+ bv.

3. Warnings. x=a (mod m) since bv=0 (mod m) and au=a (mod m)
Hmmm... only one solution. x=b (mod n) since au=0 (mod n) and bv =b (mod n)
A bit slow for large values. Only solution? If not, two solutions, x and y.
(x—y)=0 (mod m)and (x—y)=0 (mod n).
= (x—y) is multiple of m and n since gcd(m, n)=1.
= x—y>mn = x,y¢{0,...,mn—1}.
Thus, only one solution modulo mn. O
Xor Cryptography ... Public key crypography.
Computer Science:
1-True Message m _
0 - False 9 m= D(E(m,K),k)
Tvi=1 . .
Private: k Public: K Message m
1v0=1 Example: (m.K) E(m.K)
ovi=1 One-time Pad: secret s is string of length |m). . ' '
0v0=0 m=10101011110101101 Alice Bob
A® B - Exclusive or. S =
1vi=0 E(m,s) — bitwise m® s. Eve
1v0=1 D(x, s) - bitwise x @ s. Everyone knows key K|
ovi=1 Works because mea'sea s=m Bob (and Eve and me and you and you ...) can encode.
0v0o=0 ~-and totally secure! Only Alice knows the secret key k for public key K.

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A B® B=A.
Bycases: 1¢1a1=1. ...

...given E(m,s) any message mis equally likely.
Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

(Only?) Alice can decode with k.
Is this even possible?




Is public key crypto possible?

We don't really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and g. Let N = pqg.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e"" mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9, N).
Does D(E(m)) = m®® =m mod N?

Yes!

"Typically small, say e = 3.

lterative Extended GCD.

Example: p=7,g=11.
N=77.

(p—1)(q—1)=60
Choose e =7, since gcd(7,60) = 1.

egcd(7,60).
7(0)+60(1) = 60
7(1)+60(0) = 7
7(-8)+60(1) = 4
7(9)+60(-1) = 3
7(-17)+60(2) = 1

Confirm: —119+120 =1
d=e'=-17=43= (mod 60)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0,...,76}.

Message: 2!

E(2)=2¢ =27 =128 (mod 77) =51 (mod 77)
D(51) =514 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.
In general, O(N) or O(2") multiplications!

Repeated squaring.

Notice: 43 =324 8+2+1. 5143 = 5132+8+2+1 _ 5132.518.512.511
(mod 77).

4 multiplications sort of...

Need to compute 5132...511.?

511 =51 (mod 77)

512 = (51)%(51) = 2601 =60 (mod 77)

514 = (512) % (512) = 60+ 60 = 3600 = 58 (mod 77)

518 = (51%) % (51%) = 58 + 58 = 3364 = 53 (mod 77)

5116 — (518) % (518) = 53 %53 = 2809 = 37 (mod 77)

5132 = (5116) x(5116) =37 %37 = 1369 = 60 (mod 77)

5 more multiplications.

51%2.518.512.511 = (60) + (53) * (60) + (51) =2 (mod 77).
Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: x¥

Repeated squaring O(log y) multiplications versus y!!!

1. x¥: Compute x',x2, x4, ..., x2"% .
2. Multiply together x’ where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.
x* = x4 x8 s x2x x1.

Modular Exponentiation: x¥ mod N. All n-bit numbers. Repeated
Squaring:
O(n) multiplications.
O(n?) time per multiplication.
= O(n®) time.
Conclusion: x¥ mod N takes O(n®) time.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e)) =m® (mod N).
D(m,(N,d)) =m? (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.




Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m? (mod N).

N=pgandd=e" (mod (p—1)(g—1)).

Want: (m®)? = m®@ = m (mod N).

Always decode correctly?

E(m,(N,e)) =m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e""! (mod (p—1)(g—1)).
Want: (m®)? = m®? = m (mod N).

Another view:

d=e"1 (mod (p—1)(g—1)) «— ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a* =1 (mod p).

= aP-N =1 (mod p) = aP-"*"=a (mod p)
versus @ P-D@Dt1 — 3 (mod pq).
Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a* =1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p— 1} modulo p.

(a1)-(a-2)-(a(p-1)=1-2-(p~1) modp,
Since multiplication is commutative.

a (1 (p=1)=(1-(p—1)) modp.
Each of 2,...(p— 1) has an inverse modulo p, solve to get...

aP V=1 modp.




