CS70: Lecture 11. Outline.	Lots of Mods	Simple Chinese Remainder Theorem.
 Public Key Cryptography RSA system Efficiency: Repeated Squaring. Correctness: Fermat's Theorem. Construction. Warnings. 	$x = 5 \pmod{7}$ and $x = 3 \pmod{5}$. What is $x \pmod{35}$? Let's try 5. Not 3 (mod 5)! Let's try 3. Not 5 (mod 7)! If $x = 6 \pmod{7}$ then x is in {5, 12, 19, 26, 33}. Oh, only 33 is 3 (mod 5). Hmmm only one solution. A bit slow for large values.	My love is won. Zero and One. Nothing and nothing done.Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where $gcd(m, n)=1$. CRT Thm: Unique solution \pmod{mn} . Proof: Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$ Consider $v = m(m^{-1} \pmod{n})$. $v = 1 \pmod{n}$ $v = 0 \pmod{n}$ Let $x = au + bv$. $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$ $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$ Only solution? If not, two solutions, x and y . $(x - y) \equiv 0 \pmod{m}$ and $(x - y) \equiv 0 \pmod{n}$. $\Rightarrow (x - y)$ is multiple of m and n since $gcd(m, n)=1$. $\Rightarrow x - y \ge mn \Rightarrow x, y \notin \{0, \dots, mn-1\}$.Thus, only one solution modulo mn .
Xor	Cryptography	Public key crypography.
Computer Science: 1 - True 0 - False $1 \lor 1 = 1$ $1 \lor 0 = 1$ $0 \lor 1 = 1$ $0 \lor 1 = 1$ $0 \lor 0 = 0$ $A \oplus B$ - Exclusive or. $1 \lor 1 = 0$ $1 \lor 0 = 1$ $0 \lor 1 = 1$ $0 \lor 1 = 1$ $0 \lor 0 = 0$ Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2. Property: $A \oplus B \oplus B = A$. By cases: $1 \oplus 1 \oplus 1 = 1$	$m = D(E(m, s), s)$ Secret s Message m Alice Example: One-time Pad: secret s is string of length m . $m = 10101011110101101$ $s = \dots $	m = D(E(m, K), k) Private: k Public: K Message m $E(m, K)$ Eve Eve Everyone knows key K! Bob (and Eve and me and you and you) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k. Is this even possible?

Is public key crypto possible?

We don't really know. ...but we do it every day!!! RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq. Choose e relatively prime to (p-1)(q-1).¹ Compute $d = e^{-1} \mod (p-1)(q-1)$. Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key! Encoding: $\mod (x^e, N)$.

Decoding: $mod (y^d, N)$. Does $D(E(m)) = m^{ed} = m \mod N$? Yes!

Repeated squaring.

¹Typically small, say e = 3.

Notice: 43 = 32 + 8 + 2 + 1. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$ (mod 77). 4 multiplications sort of... Need to compute $51^{32} \dots 51^1$.? $51^1 \equiv 51 \pmod{77}$ $51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}$ $51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}$ $51^8 = (51^4) * (51^2) = 58 * 58 = 3364 \equiv 53 \pmod{77}$ $51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}$ $51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

```
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

Decoding got the message back!

```
Repeated Squaring took 9 multiplications versus 43.
```

Iterative Extended GCD.

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

gcd(7,60).
```

Confirm: -119 + 120 = 1 $d = e^{-1} = -17 = 43 = \pmod{60}$

Repeated Squaring: x^y

Repeated squaring O(log y) multiplications versus y!!!

1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the (log(*i*))th bit of *y* (in binary) is 1. Example: 43 = 101011 in binary. $x^{43} = x^{32} * x^8 * x^2 * x^1$.

Modular Exponentiation: $x^{\gamma} \mod N$. All *n*-bit numbers. Repeated Squaring: O(n) multiplications. $O(n^2)$ time per multiplication. $\implies O(n^3)$ time. Conclusion: $x^{\gamma} \mod N$ takes $O(n^3)$ time.

Encryption/Decryption Techniques.

```
Public Key: (77,7)
Message Choices: \{0,...,76\}.
Message: 2!
E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}
D(51) = 51^{43} \pmod{77}
uh oh!
Obvious way: 43 multiplications. Ouch.
In general, O(N) or O(2^n) multiplications!
```

RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. $O(n^3)$ time. Remember RSA encoding/decoding! $E(m, (N, e)) = m^e \pmod{N}$. $D(m, (N, d)) = m^d \pmod{N}$. For 512 bits, a few hundred million operations. Easy, peasey.

Decoding.

$$\begin{split} E(m,(N,e)) &= m^{e} \pmod{N}, \\ D(m,(N,d)) &= m^{d} \pmod{N}, \\ N &= pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}, \\ \text{Want: } (m^{e})^{d} &= m^{ed} = m \pmod{N}. \end{split}$$

Always decode correctly?

$$\begin{split} & E(m,(N,e)) = m^{e} \pmod{N}.\\ & D(m,(N,d)) = m^{d} \pmod{N}.\\ & N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.\\ & \text{Want: } (m^{e})^{d} = m^{ed} = m \pmod{N}.\\ & \text{Another view:}\\ & d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1)+1.\\ & \text{Consider...}\\ & \text{Fermat's Little Theorem: For prime } p, \text{ and } a \neq 0 \pmod{p},\\ & a^{p-1} \equiv 1 \pmod{p}.\\ & \implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p}\\ & \text{versus} \quad a^{k(p-1)(q-1)+1} = a \pmod{pq}. \end{split}$$

Similar, not same, but useful.

Correct decoding...

Fermat's Little Theorem: For prime *p*, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$. Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$. All different modulo *p* since *a* has an inverse modulo *p*. *S* contains representative of $\{1, \dots, p-1\}$ modulo *p*. $(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$, Since multiplication is commutative. $a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \mod p$. Each of $2, \dots (p-1)$ has an inverse modulo *p*, solve to get... $a^{(p-1)} \equiv 1 \mod p$.