
CS70: Lecture 11. Outline.

1. Public Key Cryptography

2. RSA system

2.1 Efficiency: Repeated Squaring.
2.2 Correctness: Fermat’s Theorem.
2.3 Construction.

3. Warnings.

Lots of Mods

x = 5 (mod 7) and x = 3 (mod 5).

What is x (mod 35)?

Let’s try 5. Not 3 (mod 5)!
Let’s try 3. Not 5 (mod 7)!

If x = 6 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).

Hmmm... only one solution.

A bit slow for large values.

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: Unique solution (mod mn).
Proof:
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au+bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

Only solution? If not, two solutions, x and y .
(x−y)≡ 0 (mod m) and (x−y)≡ 0 (mod n).

=⇒ (x−y) is multiple of m and n since gcd(m,n)=1.
=⇒ x−y ≥mn =⇒ x ,y 6∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.

Xor

Computer Science:
1 - True
0 - False

1∨1 = 1
1∨0 = 1
0∨1 = 1
0∨0 = 0

A⊕B - Exclusive or.
1∨1 = 0
1∨0 = 1
0∨1 = 1
0∨0 = 0

Note: Also modular addition modulo 2!
{0,1} is set. Take remainder for 2.

Property: A⊕B⊕B = A.
By cases: 1⊕1⊕1 = 1. . . .

Cryptography ...

BobAlice
Eve

Secret s

Message m
E(m,s)E(m,s)

m = D(E(m,s),s)

Example:
One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s = ..................................

E(m,s) – bitwise m⊕s.
D(x ,s) – bitwise x⊕s.

Works because m⊕s⊕s = m!
...and totally secure!
...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m
E(m,K )E(m,K )

m = D(E(m,K ),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?



Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Iterative Extended GCD.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

d = e−1 =−17 = 43 = (mod 60)

Encryption/Decryption Techniques.

Public Key: (77,7)
Message Choices: {0, . . . ,76}.
Message: 2!

E(2) = 2e = 27 ≡ 128 (mod 77) = 51 (mod 77)
D(51) = 5143 (mod 77)
uh oh!

Obvious way: 43 multiplications. Ouch.

In general, O(N) or O(2n) multiplications!

Repeated squaring.

Notice: 43 = 32+8+2+1. 5143 = 5132+8+2+1 = 5132 ·518 ·512 ·511

(mod 77).
4 multiplications sort of...
Need to compute 5132 . . .511.?
511 ≡ 51 (mod 77)
512 = (51)∗ (51) = 2601≡ 60 (mod 77)
514 = (512)∗ (512) = 60∗60 = 3600≡ 58 (mod 77)
518 = (514)∗ (514) = 58∗58 = 3364≡ 53 (mod 77)
5116 = (518)∗ (518) = 53∗53 = 2809≡ 37 (mod 77)
5132 = (5116)∗ (5116) = 37∗37 = 1369≡ 60 (mod 77)

5 more multiplications.

5132 ·518 ·512 ·511 = (60)∗ (53)∗ (60)∗ (51)≡ 2 (mod 77).

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated Squaring: xy

Repeated squaring O(logy) multiplications versus y !!!

1. xy : Compute x1,x2,x4, . . . ,x2blogyc
.

2. Multiply together x i where the (log(i))th bit of y (in binary) is 1.
Example: 43 = 101011 in binary.

x43 = x32 ∗x8 ∗x2 ∗x1.

Modular Exponentiation: xy mod N. All n-bit numbers. Repeated
Squaring:

O(n) multiplications.
O(n2) time per multiplication.
=⇒ O(n3) time.

Conclusion: xy mod N takes O(n3) time.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.



Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.


