CS70: Lecture 11. Outline.

- 1. Public Key Cryptography
- 2. RSA system
 - 2.1 Efficiency: Repeated Squaring.
 - 2.2 Correctness: Fermat's Theorem.
 - 2.3 Construction.
- 3. Warnings.

 $x = 5 \pmod{7}$ and $x = 3 \pmod{5}$.

```
x = 5 \pmod{7} and x = 3 \pmod{5}. What is x \pmod{35}?
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5.
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 (mod 5)!
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 \pmod{5}!
Let's try 3.
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!
If x = 6 \pmod{7}
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 \pmod{5}!
Let's try 3. Not 5 \pmod{7}!
If x = 6 \pmod{7}
then x is in \{5, 12, 19, 26, 33\}.
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 \pmod{5}!
Let's try 3. Not 5 \pmod{7}!
If x = 6 \pmod{7}
then x is in \{5, 12, 19, 26, 33\}.
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.

What is x \pmod{35}?

Let's try 5. Not 3 (mod 5)!

Let's try 3. Not 5 (mod 7)!

If x = 6 \pmod{7}

then x is in \{5, 12, 19, 26, 33\}.

Oh, only 33 is 3 (mod 5).
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}. What is x \pmod{35}?

Let's try 5. Not 3 \pmod{5}!

Let's try 3. Not 5 \pmod{7}!

If x = 6 \pmod{7}

then x is in \{5,12,19,26,33\}.

Oh, only 33 is 3 \pmod{5}.

Hmmm...
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}. What is x \pmod{35}?

Let's try 5. Not 3 \pmod{5}!

Let's try 3. Not 5 \pmod{7}!

If x = 6 \pmod{7}

then x is in \{5,12,19,26,33\}.

Oh, only 33 is 3 \pmod{5}.

Hmmm... only one solution.
```

```
x = 5 \pmod{7} and x = 3 \pmod{5}.
What is x \pmod{35}?
Let's try 5. Not 3 (mod 5)!
Let's try 3. Not 5 (mod 7)!
If x = 6 \pmod{7}
 then x is in \{5, 12, 19, 26, 33\}.
Oh, only 33 is 3 (mod 5).
Hmmm... only one solution.
A bit slow for large values.
```

My love is won.

My love is won. Zero and One.

My love is won. Zero and One. Nothing and nothing done.

My love is won. Zero and One. Nothing and nothing done.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$.

 $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

 $v = 1 \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$.

$$u = 0 \pmod{n}$$
 $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$.

$$u = 0 \pmod{n}$$
 $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let x = au + bv.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

 $v = 1 \pmod{n} \qquad v = 0 \pmod{n}.$

 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let x = au + bv.

 $x = a \pmod{m}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.
 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let x = au + bv.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.
 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.
 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$

$$x = b \pmod{n}$$
 since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

Consider $v = m(m^{-1} \pmod{n})$.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let x = au + bv.

 $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$

$$x = b \pmod{n}$$
 since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.
 $v = 1 \pmod{n}$ $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

 $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$ $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution?

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let x = au + bv.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).

u = 0 \pmod{n} u = 1 \pmod{m}
```

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let x = au + bv.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider
$$u = n(n^{-1} \pmod{m})$$
.

$$u = 0 \pmod{n}$$
 $u = 1 \pmod{m}$

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

$$\implies$$
 $(x-y)$ is multiple of m and n since $gcd(m,n)=1$.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n) = 1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider
$$u = n(n^{-1} \pmod{m})$$
.

$$u = 0 \pmod{n}$$
 $u = 1 \pmod{m}$

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

$$\implies$$
 $(x-y)$ is multiple of m and n since $gcd(m,n)=1$.

$$\implies x - y \ge mn$$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

```
Consider u = n(n^{-1} \pmod{m}).
```

$$u = 0 \pmod{n}$$
 $u = 1 \pmod{m}$

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

$$\implies$$
 $(x-y)$ is multiple of m and n since $gcd(m,n)=1$.

$$\implies x-y \ge mn \implies x,y \notin \{0,\ldots,mn-1\}.$$

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*).

Proof:

Consider
$$u = n(n^{-1} \pmod{m})$$
.

$$u = 0 \pmod{n}$$
 $u = 1 \pmod{m}$

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution? If not, two solutions, x and y.

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

$$\implies$$
 $(x-y)$ is multiple of m and n since $gcd(m,n)=1$.

$$\implies x-y \ge mn \implies x,y \not\in \{0,\ldots,mn-1\}.$$

Thus, only one solution modulo *mn*.

My love is won. Zero and One. Nothing and nothing done.

```
Find x = a \pmod{m} and x = b \pmod{n} where gcd(m, n) = 1.
```

CRT Thm: Unique solution (mod *mn*).

```
Proof:
```

Consider
$$u = n(n^{-1} \pmod{m})$$
.
 $u = 0 \pmod{n}$ $u = 1 \pmod{m}$

Consider
$$v = m(m^{-1} \pmod{n})$$
.

$$v = 1 \pmod{n}$$
 $v = 0 \pmod{m}$

Let
$$x = au + bv$$
.

$$x = a \pmod{m}$$
 since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$
 $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution? If not, two solutions, x and y.

$$(x-y) \equiv 0 \pmod{m}$$
 and $(x-y) \equiv 0 \pmod{n}$.

$$\implies$$
 $(x-y)$ is multiple of m and n since $gcd(m,n)=1$.

$$\implies x-y \geq mn \implies x,y \not\in \{0,\dots,mn-1\}.$$

Thus, only one solution modulo mn.

- 1 True
- 0 False

- 1 True
- 0 False
- $1 \lor 1 = 1$

- 1 True
- 0 False
- $1 \lor 1 = 1$
- $1 \lor 0 = 1$
- $0 \lor 1 = 1$
- $0 \lor 0 = 0$

- 1 True
- 0 False
- $1 \lor 1 = 1$
- $1 \lor 0 = 1$
- $0 \lor 1 = 1$
- $0 \lor 0 = 0$
- $A \oplus B$ Exclusive or.

- 1 True
- 0 False
- $1 \lor 1 = 1$
- $1 \lor 0 = 1$
- $0 \lor 1 = 1$
- $0 \lor 0 = 0$
- $A \oplus B$ Exclusive or.
- $\mathbf{1}\vee\mathbf{1}=\mathbf{0}$

Computer Science: 1 - True 0 - False $1 \lor 1 = 1$ $1 \lor 0 = 1$ $0 \lor 1 = 1$ $0 \lor 0 = 0$ $A \oplus B$ - Exclusive or. $1 \lor 1 = 0$ $1 \lor 0 = 1$ $0 \lor 1 = 1$

 $0 \lor 0 = 0$

```
Computer Science:
 1 - True
 0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A⊕B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
```

Note: Also modular addition modulo 2!

```
Computer Science:
 1 - True
 0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A⊕B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
```

Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2.

```
Computer Science:
 1 - True
 0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A⊕B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
```

Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2.

```
Computer Science:
 1 - True
 0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A⊕B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
```

Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2.

Property: $A \oplus B \oplus B = A$.

```
Computer Science:
 1 - True
 0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A \oplus B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
```

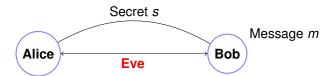
Note: Also modular addition modulo 2! $\{0,1\}$ is set. Take remainder for 2.

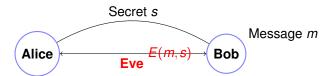
Property: $A \oplus B \oplus B = A$. By cases: $1 \oplus 1 \oplus 1 = 1$.

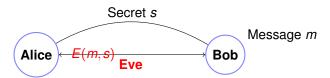
Computer Science:

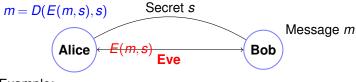
1 - True

```
0 - False
1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
A \oplus B - Exclusive or.
1 \lor 1 = 0
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0
Note: Also modular addition modulo 2!
      {0,1} is set. Take remainder for 2.
Property: A \oplus B \oplus B = A.
By cases: 1 \oplus 1 \oplus 1 = 1....
```







Example:

Example:

One-time Pad: secret s is string of length |m|.

Example:

One-time Pad: secret s is string of length |m|. m = 101010111110101101

Example:

One-time Pad: secret s is string of length |m|.

m = 101010111110101101

 $s = \dots$

Example:

One-time Pad: secret s is string of length |m|.

$$m = 101010111110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$S = \dots$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$S = \dots$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$S = \dots$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m, s) any message m is equally likely.

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages:

Shared secret!

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..

Example:

One-time Pad: secret s is string of length |m|.

$$m = 10101011110101101$$

$$E(m,s)$$
 – bitwise $m \oplus s$.

$$D(x,s)$$
 – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$

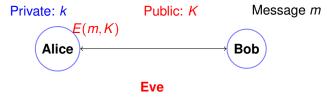
...and totally secure!

...given E(m,s) any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.



$$m = D(E(m, K), k)$$

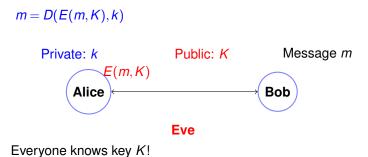
Private: k

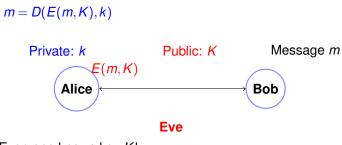
Public: K

Message m

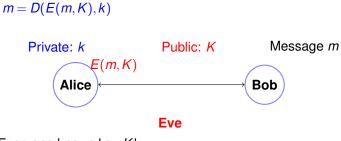
Alice

Bob

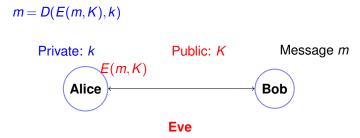




Everyone knows key K! Bob (and Eve



Everyone knows key K! Bob (and Eve and me



Everyone knows key K!Bob (and Eve and me and you

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m

Eve

Everyone knows key K!Bob (and Eve and me and you and you ...) can encode.

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m

Eve

Everyone knows key K!Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m

Eve

Everyone knows key K!Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m

Eve

Everyone knows key K!Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

Is this even possible?

¹Typically small, say e = 3.

We don't really know.

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

¹Typically small, say e = 3.

We don't really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq.

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq. Choose e relatively prime to (p-1)(q-1).

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq. Choose e relatively prime to (p-1)(q-1). Compute $d = e^{-1} \mod (p-1)(q-1)$.

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!! RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq. Choose e relatively prime to (p-1)(q-1).¹ Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose *e* relatively prime to (p-1)(q-1).¹

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose *e* relatively prime to (p-1)(q-1).

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

Decoding: $mod(y^d, N)$.

¹Typically small, say e = 3.

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose *e* relatively prime to (p-1)(q-1).¹

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

Decoding: $mod(y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

¹Typically small, say e = 3.

```
We don't really know.
...but we do it every day!!!

BSA (Rivest Shamir and Adlen
```

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose *e* relatively prime to (p-1)(q-1).¹

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key!

Encoding: $mod(x^e, N)$.

Decoding: $mod(y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

Yes!

¹Typically small, say e = 3.

Example: p = 7, q = 11.

Example: p = 7, q = 11.

N = 77.

Example: p = 7, q = 11.

N = 77.

(p-1)(q-1)=60

Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).
```

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).
```

$$7(0) + 60(1) = 60$$

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since \gcd(7,60) = 1.

\gcd(7,60).
```

$$\begin{array}{rcl} 7(0) + 60(1) & = & 60 \\ 7(1) + 60(0) & = & 7 \end{array}$$

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since \gcd(7,60) = 1.

\gcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm:

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since \gcd(7,60) = 1.

\gcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm: -119 + 120 = 1

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since \gcd(7,60) = 1.

\gcd(7,60).
```

$$7(0)+60(1) = 60$$

 $7(1)+60(0) = 7$
 $7(-8)+60(1) = 4$
 $7(9)+60(-1) = 3$
 $7(-17)+60(2) = 1$

Confirm:
$$-119 + 120 = 1$$

 $d = e^{-1} = -17 = 43 = \pmod{60}$

Public Key: (77,7)

Public Key: (77,7)

 $Message\ Choices:\ \{0,\dots,76\}.$

Public Key: (77,7)

Message Choices: $\{0,\ldots,76\}$.

```
Public Key: (77,7)
```

Message Choices: $\{0,\ldots,76\}$.

Message: 2!

E(2)

```
Public Key: (77,7)
```

Message Choices: $\{0, \dots, 76\}$.

$$E(2) = 2^e$$

```
Public Key: (77,7)
```

Message Choices: $\{0, \dots, 76\}$.

$$E(2) = 2^e = 2^7$$

```
Public Key: (77,7)
```

Message Choices: $\{0, \dots, 76\}$.

$$E(2) = 2^e = 2^7 \equiv 128 \ (\text{mod } 77)$$

```
Public Key: (77,7)
```

Message Choices: $\{0, \dots, 76\}$.

$$E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}$$

```
Public Key: (77,7) Message Choices: \{0,\ldots,76\}. Message: 2! E(2)=2^e=2^7\equiv 128\pmod{77}=51\pmod{77} D(51)=51^{43}\pmod{77}
```

```
Public Key: (77,7) Message Choices: \{0,\ldots,76\}. Message: 2! E(2)=2^e=2^7\equiv 128\pmod{77}=51\pmod{77} D(51)=51^{43}\pmod{77} uh oh!
```

```
Public Key: (77,7)
Message Choices: \{0,...,76\}.

Message: 2!
E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}
D(51) = 51^{43} \pmod{77}
uh oh!

Obvious way: 43 multiplications.
```

```
Public Key: (77,7)
Message Choices: \{0,...,76\}.

Message: 2!

E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}
D(51) = 51^{43} \pmod{77}
uh oh!

Obvious way: 43 multiplications. Ouch.
```

```
Public Key: (77,7) Message Choices: \{0,\ldots,76\}. Message: 2! E(2)=2^e=2^7\equiv 128\pmod{77}=51\pmod{77} D(51)=51^{43}\pmod{77} uh oh! Obvious way: 43 multiplications. Ouch. In general, O(N) or O(2^n) multiplications!
```

Notice: 43 = 32 + 8 + 2 + 1.

Notice: $43 = 32 + 8 + 2 + 1.51^{43}$

Notice: 43 = 32 + 8 + 2 + 1. $51^{43} = 51^{32+8+2+1}$

Notice: 43 = 32 + 8 + 2 + 1. $51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

Notice: 43 = 32 + 8 + 2 + 1. $51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$. 4 multiplications sort of...

Notice: 43 = 32 + 8 + 2 + 1. $51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$ (mod 77). 4 multiplications sort of... Need to compute $51^{32} \dots 51^1$.?

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}. 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77}
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77} 51^2 =
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77} 51^2 = (51)*(51) = 2601 \equiv 60 \pmod{77}
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77} 51^2 = (51)*(51) = 2601 \equiv 60 \pmod{77} 51^4 = 60
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}. 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77} 51^2 = (51)*(51) = 2601 \equiv 60 \pmod{77} 51^4 = (51^2)*(51^2)
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 
4 multiplications sort of... 
Need to compute 51^{32} \dots 51^1.? 
51^1 \equiv 51 \pmod{77} 51^2 = (51)*(51) = 2601 \equiv 60 \pmod{77} 51^4 = (51^2)*(51^2) = 60*60 = 3600 \equiv 58 \pmod{77}
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77} 51^2 = (51)*(51) = 2601 \equiv 60 \pmod{77} 51^4 = (51^2)*(51^2) = 60*60 = 3600 \equiv 58 \pmod{77} 51^8 = 60
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 4 multiplications sort of... Need to compute 51^{32} \dots 51^1.? 51^1 \equiv 51 \pmod{77} 51^2 = (51)*(51) = 2601 \equiv 60 \pmod{77} 51^4 = (51^2)*(51^2) = 60*60 = 3600 \equiv 58 \pmod{77} 51^8 = (51^4)*(51^4)
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 
4 multiplications sort of... 
Need to compute 51^{32} \dots 51^1.? 
51^1 \equiv 51 \pmod{77} 
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77} 
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77} 
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 
4 multiplications sort of... 
Need to compute 51^{32} \dots 51^1.? 
51^1 \equiv 51 \pmod{77} 51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77} 51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77} 51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77} 51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 (mod 77). 
4 multiplications sort of... 
Need to compute 51^{32} \dots 51^1.? 
51^1 \equiv 51 \pmod{77} 51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77} 51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77} 51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77} 51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77} 51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51<sup>32</sup>...51<sup>1</sup>.?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51<sup>32</sup>...51<sup>1</sup>.?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51<sup>32</sup>...51<sup>1</sup>.?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

Decoding got the message back!

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51^{32}...51^{1}?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

Decoding got the message back!

Repeated Squaring took 9 multiplications

```
Notice: 43 = 32 + 8 + 2 + 1. 51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1
(mod 77).
4 multiplications sort of...
Need to compute 51<sup>32</sup>...51<sup>1</sup>.?
51^1 \equiv 51 \pmod{77}
51^2 = (51) * (51) = 2601 \equiv 60 \pmod{77}
51^4 = (51^2) * (51^2) = 60 * 60 = 3600 \equiv 58 \pmod{77}
51^8 = (51^4) * (51^4) = 58 * 58 = 3364 \equiv 53 \pmod{77}
51^{16} = (51^8) * (51^8) = 53 * 53 = 2809 \equiv 37 \pmod{77}
51^{32} = (51^{16}) * (51^{16}) = 37 * 37 = 1369 \equiv 60 \pmod{77}
5 more multiplications.
51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) * (53) * (60) * (51) \equiv 2 \pmod{77}.
```

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y : Compute x^1 ,

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^{y} : Compute x^{1}, x^{2} ,

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y : Compute x^1, x^2, x^4 ,

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y : Compute $x^1, x^2, x^4, ...,$

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y : Compute $x^1, x^2, x^4, \dots, x^{2^{\lfloor \log y \rfloor}}$.

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1.

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example:

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary. $x^{43} = x^{32} * x^8 * x^2 * x^1$

Modular Exponentiation: $x^y \mod N$.

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

 $x^{43} = x^{32} * x^8 * x^2 * x^1.$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications.

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

- O(n) multiplications.
- $O(n^2)$ time per multiplication.

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications.

 $O(n^2)$ time per multiplication.

 $\implies O(n^3)$ time.

Conclusion: $x^y \mod N$

Repeated squaring $O(\log y)$ multiplications versus y!!!

- 1. x^{y} : Compute $x^{1}, x^{2}, x^{4}, ..., x^{2^{\lfloor \log y \rfloor}}$.
- 2. Multiply together x^i where the $(\log(i))$ th bit of y (in binary) is 1. Example: 43 = 101011 in binary.

$$x^{43} = x^{32} * x^8 * x^2 * x^1.$$

Modular Exponentiation: $x^y \mod N$. All *n*-bit numbers. Repeated Squaring:

O(n) multiplications.

 $O(n^2)$ time per multiplication.

 $\implies O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.

Modular Exponentiation: $x^y \mod N$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

$$E(m,(N,e))=m^e \pmod{N}.$$

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$

For 512 bits, a few hundred million operations.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

For 512 bits, a few hundred million operations. Easy, peasey.

Decoding.

$$E(m,(N,e))=m^e \pmod{N}$$
.

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq$

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$

```
\begin{split} E(m,(N,e)) &= m^e \pmod{N}. \\ D(m,(N,d)) &= m^d \pmod{N}. \\ N &= pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \\ \text{Want:} \end{split}
```

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq$ and $d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$

 $E(m,(N,e))=m^e \pmod{N}$.

 $E(m,(N,e)) = m^e \pmod{N}.$ $D(m,(N,d)) = m^d \pmod{N}.$

 $E(m,(N,e)) = m^e \pmod{N}.$ $D(m,(N,d)) = m^d \pmod{N}.$

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

$$N = pq$$

```
E(m,(N,e)) = m^e \pmod{N}.

D(m,(N,d)) = m^d \pmod{N}.

N = pq and d = e^{-1} \pmod{(p-1)(q-1)}.
```

```
E(m,(N,e)) = m^e \pmod{N}.
D(m,(N,d)) = m^d \pmod{N}.
N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.
Want:
```

```
E(m,(N,e)) = m^e \pmod{N}.

D(m,(N,d)) = m^d \pmod{N}.

N = pq and d = e^{-1} \pmod{(p-1)(q-1)}.

Want: (m^e)^d = m^{ed} = m \pmod{N}.
```

```
E(m,(N,e)) = m^e \pmod{N}.
D(m,(N,d)) = m^d \pmod{N}.
N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.
Want: (m^e)^d = m^{ed} = m \pmod{N}.
Another view:
```

$$E(m,(N,e)) = m^e \pmod{N}.$$

 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq$ and $d = e^{-1} \pmod{(p-1)(q-1)}.$

Want: $(m^e)^d = m^{ed} = m \pmod{N}$.

Another view:

$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$$

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq$ and $d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$

Another view:

$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$$

Consider...

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq$ and $d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$

Consider...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

$$N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$$
Consider...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

$$\implies a^{k(p-1)} \equiv 1 \pmod{p}$$

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$

Fermat's Little Theorem: For prime
$$p$$
, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

$$\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies$$

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view: $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$

Fermat's Little Theorem: For prime
$$p$$
, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

$$\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1}$$

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p}$$

$$E(m,(N,e)) = m^e \pmod{N}.$$
 $D(m,(N,d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p}$$
versus $a^{k(p-1)(q-1)+1} = a \pmod{pq}$.

$$E(m,(N,e)) = m^e \pmod{N}.$$

$$D(m,(N,d)) = m^d \pmod{N}.$$

$$N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$
Another view:
$$d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.$$
Consider...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

$$\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p}$$

versus $a^{k(p-1)(q-1)+1} = a \pmod{pq}$.

Similar, not same, but useful.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Proof:

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p,

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

Fermat's Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$
.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}.$

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a\cdot 1)\cdot (a\cdot 2)\cdots (a\cdot (p-1))\equiv 1\cdot 2\cdots (p-1)\mod p,$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1))\equiv (1\cdots(p-1))\mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.