CS70: Lecture 11. Outline.

- 1. RSA system (continued)
 - 1.1 Correctness: Fermat's Theorem.
 - 1.2 Construction.
- 2. Signature Schemes.
- 3. Warnings.

Bijections

Bijection is **one to one** and **onto**. Bijection: $f: A \rightarrow B$. Domain: *A*, Co-Domain: *B*. Versus Range. E.g. **sin** (*x*). A = B = reals. Range is [-1,1]. Onto: [-1,1]. Not one-to-one. **sin** (π) = **sin** (0) = 0.

```
Range Definition always is onto.
Consider f(x) = ax \mod m.
f: \{0, \dots, m-1\} \rightarrow \{0, \dots, m-1\}.
Domain/Co-Domain: \{0, \dots, m-1\}.
```

Note: Why? Inverse if and only if $f(\cdot)$ one to one. Same size.

When is it a bijection? When gcd(a, m) is? ... 1.

Not Example: a = 2, m = 4, $f(0) = f(2) = 0 \pmod{4}$.

Isomorphisms.

Bijection:

 $f(x) = ax \pmod{m}$ if gcd(a, m) = 1.

Simplified Chinese Remainder Theorem:

There is a unique x (mod mn) where $x = a \pmod{m}$ and $x = b \pmod{m}$ and gcd(n,m) = 1.

Bijection between $(a \pmod{n}, b \pmod{m})$ and $x \pmod{m}n$.

Consider m = 5, n = 9, then if (a, b) = (3, 7) then $x = 43 \pmod{45}$.

Consider (a', b') = (2, 4), then $x = 22 \pmod{45}$.

Now consider: (a, b) + (a', b') = (0, 2).

What is x where $x = 0 \pmod{5}$ and $x = 2 \pmod{9}$?

Try $43 + 22 = 65 = 20 \pmod{45}$.

Isomorphism:

```
the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!
```

Public key crypography.

m = D(E(m, K), k)Private: k
Public: K
Message m E(m, K)Bob
Eve

Everyone knows key K! Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

Is this even possible?

Is public key crypto possible?

We don't really know. ...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman) Pick two large primes p and q. Let N = pq. Choose e relatively prime to (p-1)(q-1).¹ Compute $d = e^{-1} \mod (p-1)(q-1)$. Announce $N(=p \cdot q)$ and e: K = (N, e) is my public key! Encoding: $\mod (x^e, N)$. Decoding: $\mod (y^d, N)$. Does $D(E(m)) = m^{ed} = m \mod N$? Yes!

¹Typically small, say e = 3.

Modular Exponentiation: $x^{\gamma} \mod N$. All *n*-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

 $\begin{aligned} E(m,(N,e)) &= m^e \pmod{N}, \\ D(m,(N,d)) &= m^d \pmod{N}. \end{aligned}$

For 512 bits, a few hundred million operations. Easy, peasey.

Decoding.

$$E(m, (N, e)) = m^e \pmod{N}.$$

 $D(m, (N, d)) = m^d \pmod{N}.$
 $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$
Want: $(m^e)^d = m^{ed} = m \pmod{N}.$

Always decode correctly?

 $E(m, (N, e)) = m^{e} \pmod{N}.$ $D(m, (N, d)) = m^{d} \pmod{N}.$ $N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.$ Want: $(m^{e})^{d} = m^{ed} = m \pmod{N}.$ Another view:

 $d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1)+1.$

Consider...

Fermat's Little Theorem: For prime *p*, and $a \neq 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}$$

$$\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p}$$

versus $a^{k(p-1)(q-1)+1} = a \pmod{pq}$.

Similar, not same, but useful.

Correct decoding...

Fermat's Little Theorem: For prime *p*, and $a \neq 0 \pmod{p}$,

 $a^{p-1} \equiv 1 \pmod{p}$.

Proof: Consider $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \dots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$$
,

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1)) \equiv (1\cdots(p-1)) \mod p.$$

Each of 2,... (p-1) has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

Always decode correctly? (cont.)

Fermat's Little Theorem: For prime *p*, and $a \neq 0 \pmod{p}$,

 $a^{p-1} \equiv 1 \pmod{p}$.

Lemma 1: For any prime *p* and any *a*, *b*, $a^{1+b(p-1)} \equiv a \pmod{p}$ **Proof:** If $a \equiv 0 \pmod{p}$, of course.

Otherwise $a^{1+b(p-1)} \equiv a^1 * (a^{p-1})^b \equiv a * (1)^b \equiv a \pmod{p}$

...Decoding correctness...

Lemma 1: For any prime *p* and any *a*, *b*, $a^{1+b(p-1)} \equiv a \pmod{p}$

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Let a = x, b = k(p-1) and apply Lemma 1 with modulus q.

 $x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$

Let a = x, b = k(q-1) and apply Lemma 1 with modulus p.

 $x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$

 $x^{1+k(q-1)(p-1)} - x$ is multiple of *p* and *q*.

$$x^{1+k(q-1)(p-1)} - x \equiv 0 \mod (pq) \Longrightarrow x^{1+k(q-1)(p-1)} = x \mod pq.$$

RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes! Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where $ed \equiv 1 \mod (p-1)(q-1) \implies ed = 1 + k(p-1)(q-1)$

 $x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$

Construction of keys....

Find large (100 digit) primes *p* and *q*?
 Prime Number Theorem: π(N) number of primes less than N.For all N ≥ 17

$$\pi(N) \ge N/\ln N.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170...Miller-Rabin test.. Primes in *P*).

For 1024 bit number, 1 in 710 is prime.

- 2. Choose *e* with gcd(e, (p-1)(q-1)) = 1. Use gcd algorithm to test.
- 3. Find inverse *d* of *e* modulo (p-1)(q-1). Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.

Security?

- 1. Alice knows *p* and *q*.
- 2. Bob only knows, N(=pq), and *e*.

Does not know, for example, d or factorization of N.

3. I don't know how to break this scheme without factoring *N*.

No one I know or have heard of admits to knowing how to factor *N*. Breaking in general sense \implies factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:

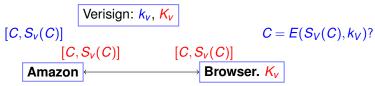
Bob encodes credit card number, *c*, concatenated with random *k*-bit number *r*.

Never sends just *c*.

Again, more work to do to get entire system.

CS161...

Signatures using RSA.



Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign's key: $K_V = (N, e)$ and $k_V = d$ (N = pq.)

Browser "knows" Verisign's public key: K_V .

Amazon Certificate: C ="I am Amazon. My public Key is K_A ." Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: [C, y]

Checks $E(y, K_V) = C$?

 $E(S_{\nu}(C), K_{\nu}) = (S_{\nu}(C))^{e} = (C^{d})^{e} = C^{de} = C \pmod{N}$ Valid signature of Amazon certificate C!

Security: Eve can't forge unless she "breaks" RSA scheme.

Public Key Cryptography: $D(E(m,K),k) = (m^e)^d \mod N = m.$ Signature scheme: $E(D(C,k),K) = (C^d)^e \mod N = C$

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

RSA Scheme: N = pq and $d = e^{-1} \pmod{(p-1)(q-1)}$. $E(x) = x^e \pmod{N}$. $D(y) = y^d \pmod{N}$.

Repeated Squaring \implies efficiency.

Fermat's Theorem \implies correctness.

Good for Encryption and Signature Schemes.