
CS70: Lecture 11. Outline.

1. RSA system (continued)

1.1 Correctness: Fermat’s Theorem.
1.2 Construction.

2. Signature Schemes.

3. Warnings.

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A = B = reals.
Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.

Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A = B = reals.
Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).

A = B = reals.
Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1].

Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].

Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one.

sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.

Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.

f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.

Domain/Co-Domain: {0, . . . ,m−1}.
Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one.

Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?

When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is

? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is?

... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4,

f (0) = f (2) = 0 (mod 4).

Bijections
Bijection is one to one and onto.
Bijection:

f : A→ B.
Domain: A, Co-Domain: B.
Versus Range.

E.g. sin (x).
A = B = reals.

Range is [−1,1]. Onto: [−1,1].
Not one-to-one. sin (π) = sin (0) = 0.

Range Definition always is onto.
Consider f (x) = ax mod m.
f : {0, . . . ,m−1}→ {0, . . . ,m−1}.
Domain/Co-Domain: {0, . . . ,m−1}.

Note: Why? Inverse if and only if f (·) one to one. Same size.

When is it a bijection?
When gcd(a,m) is? ... 1.

Not Example: a = 2, m = 4, f (0) = f (2) = 0 (mod 4).

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:

There is a unique x (mod mn) where x = a (mod m) and x = b
(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider:

(a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65

= 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:

the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Isomorphisms.

Bijection:

f (x) = ax (mod m) if gcd(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x = a (mod m) and x = b

(mod n) and gcd(n,m) = 1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Consider m = 5, n = 9, then if (a,b) = (3,7) then x = 43 (mod 45).

Consider (a′,b′) = (2,4), then x = 22 (mod 45).

Now consider: (a,b)+(a′,b′) = (0,2).

What is x where x = 0 (mod 5) and x = 2 (mod 9)?

Try 43+22 = 65 = 20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

correspond to actions in (mod 45)!

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: K

Private: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k

Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m
E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve

and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me

and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you

and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .

(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Public key crypography.

BobAlice

Eve

Public: KPrivate: k Message m

E(m,K)

E(m,K)

m = D(E(m,K),k)

Everyone knows key K !
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K .
(Only?) Alice can decode with k .

Is this even possible?

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.

...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).

Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p−1)(q−1).1

Compute d = e−1 mod (p−1)(q−1).
Announce N(= p ·q) and e: K = (N,e) is my public key!

Encoding: mod (xe,N).

Decoding: mod (yd ,N).

Does D(E(m)) = med = m mod N?

Yes!

1Typically small, say e = 3.

RSA is pretty fast.

Modular Exponentiation: xy mod N.

All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).

D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.

Easy, peasey.

RSA is pretty fast.

Modular Exponentiation: xy mod N. All n-bit numbers.
O(n3) time.

Remember RSA encoding/decoding!

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

Decoding.

E(m,(N,e)) = me (mod N).

D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq

and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want:

(me)d = med = m (mod N).

Decoding.

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Always decode correctly?

E(m,(N,e)) = me (mod N).

D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq

and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want:

(me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:

d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p)

=⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒

ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1

= a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Always decode correctly?

E(m,(N,e)) = me (mod N).
D(m,(N,d)) = md (mod N).

N = pq and d = e−1 (mod (p−1)(q−1)).

Want: (me)d = med = m (mod N).

Another view:
d = e−1 (mod (p−1)(q−1)) ⇐⇒ ed = k(p−1)(q−1)+1.

Consider...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

=⇒ ak(p−1) ≡ 1 (mod p) =⇒ ak(p−1)+1 = a (mod p)

versus ak(p−1)(q−1)+1 = a (mod pq).

Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof:

Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.

S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p,

solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof:

If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡

a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b

≡ a∗ (1)b ≡ a (mod p)

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Proof: If a≡ 0 (mod p), of course.

Otherwise
a1+b(p−1) ≡ a1 ∗ (ap−1)b ≡ a∗ (1)b ≡ a (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq)

=⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

...Decoding correctness...

Lemma 1: For any prime p and any a,b,
a1+b(p−1) ≡ a (mod p)

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Let a = x , b = k(p−1) and apply Lemma 1 with modulus q.

x1+k(p−1)(q−1) ≡ x (mod q)

Let a = x , b = k(q−1) and apply Lemma 1 with modulus p.

x1+k(p−1)(q−1) ≡ x (mod p)

x1+k(q−1)(p−1)−x is multiple of p and q.

x1+k(q−1)(p−1)−x ≡ 0 mod (pq) =⇒ x1+k(q−1)(p−1) = x mod pq.

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!

Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d

= xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡

xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1

≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed

≡ x

(mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x ,k ,
x1+k(p−1)(q−1) ≡ x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (xe)d = xed ≡ x (mod pq),

where ed ≡ 1 mod (p−1)(q−1) =⇒ ed = 1+k(p−1)(q−1)

xed ≡ xk(p−1)(q−1)+1 ≡ x (mod pq).

Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime?

...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..

Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test..

Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.

Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).

Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Construction of keys.. ..

1. Find large (100 digit) primes p and q?
Prime Number Theorem: π(N) number of primes less than
N.For all N ≥ 17

π(N)≥ N/ lnN.

Choosing randomly gives approximately 1/(lnN) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p−1)(q−1)) = 1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p−1)(q−1).
Use extended gcd algorithm.

All steps are polynomial in O(logN), the number of bits.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.

Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.

Breaking in general sense =⇒ factoring algorithm.

Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense =⇒ factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

concatenated with random k -bit number r .

Never sends just c.

Again, more work to do to get entire system.

CS161...

Signatures using RSA.

Verisign:

kv , Kv

Browser.

Kv

Amazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign:

kv , Kv

Browser.

Kv

Amazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser.

Kv

Amazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)

Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .

Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”

Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)] [C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.

Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.

Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]

Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV)

= (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e

= (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e

= Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde

= C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

Signatures using RSA.

Verisign: kv , Kv

Browser. KvAmazon

[C,Sv (C)]

[C,Sv (C)]

[C,Sv (C)]

C = E(SV (C),kV)?

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: KV = (N,e) and kV = d (N = pq.)
Browser “knows” Verisign’s public key: KV .
Amazon Certificate: C = “I am Amazon. My public Key is KA.”
Versign signature of C: Sv (C): D(C,kV) = Cd mod N.
Browser receives: [C,y]
Checks E(y ,KV) = C?

E(Sv (C),KV) = (Sv (C))e = (Cd)e = Cde = C (mod N)
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

RSA

Public Key Cryptography:

D(E(m,K),k) = (me)d mod N = m.

Signature scheme:

E(D(C,k),K) = (Cd)e mod N = C

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:

N = pq and d = e−1 (mod (p−1)(q−1)).
E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption

and Signature Schemes.

Summary.

Public-Key Encryption.

RSA Scheme:
N = pq and d = e−1 (mod (p−1)(q−1)).

E(x) = xe (mod N).
D(y) = yd (mod N).

Repeated Squaring =⇒ efficiency.

Fermat’s Theorem =⇒ correctness.

Good for Encryption and Signature Schemes.

