CS70: Lecture 11. Outline.

1. RSA system (continued)

1.1 Correctness: Fermat’s Theorem.
1.2 Construction.

2. Signature Schemes.

3. Warnings.

Bijections

Bijection is one to one and onto.
Bijection:

Bijections
Bijection is one to one and onto.
Bijection:
f-A—B.

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1].

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1]. Onto: [-1,1].

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1]. Onto: [-1,1].
Not one-to-one.

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1]. Onto: [-1,1].
Not one-to-one. sin () = sin (0) = 0.
Range Definition always is onto.

Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1]. Onto: [-1,1].
Not one-to-one. sin () = sin (0) = 0.
Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1]. Onto: [-1,1].
Not one-to-one. sin () = sin (0) = 0.
Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.

Note: Why? Inverse if and only if f(-) one to one.

Bijections

Bijection is one to one and onto.
Bijection:
f-A—B.
Domain: A, Co-Domain: B.
Versus Range.
E.g. sin (x).
A= B=reals.
Range is [-1,1]. Onto: [-1,1].
Not one-to-one. sin () = sin (0) = 0.
Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.

Note: Why? Inverse if and only if f(-) one to one. Same size.

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.

When is it a bijection?

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.

When is it a bijection?
When gecd(a,m) is

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.

When is it a bijection?
When gecd(a,m) is7

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.

When is it a bijection?
When ged(a,m)is7 ... 1.

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.
When is it a bijection?
When ged(a,m)is7 ... 1.

Not Example: a=2, m=4,

Bijections

Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.
When is it a bijection?
When ged(a,m)is7 ... 1.

Not Example: a=2, m=4, f(0) =f(2) =0 (mod 4).

Isomorphisms.

Bijection:

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.
Simplified Chinese Remainder Theorem:

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider:

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (d,b') = (2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43 +22 =65

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isomorphism:

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)

Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!

Public key crypography.

@ Bob

Eve

Public key crypography.

Public: K

@ Bob

Eve

Public key crypography.

Private: k Public: K

@ Bob

Eve

Public key crypography.

Private: k Public: K Message m

@ Bob

Eve

Public key crypography.

Private: k Public: K Message m

E(m,K)

Eve

Public key crypography.

Private: k Public: K Message m

(m,K)
@ Bob

Eve

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve and me

Eve

Message m

Bob

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K

(m.K)

Everyone knows key K!
Bob (and Eve and me and you

Eve

Message m

Bob

Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.

Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.

Public key crypography.

m= D(E(m,K), k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?

Is public key crypto possible?

"Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p—1)(g—1)."

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p—1)(g—1).
Compute d=e"' mod (p—1)(g—1).

1

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!
Encoding: mod (x¢,N).

Decoding: mod (y9,N).

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d =e~' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!
Encoding: mod (x¢,N).

Decoding: mod (y9,N).

Does D(E(m)) = m® = m mod N?

Typically small, say e = 3.

Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

Typically small, say e = 3.

RSA is pretty fast.

Modular Exponentiation: x mod N.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!

E(m,(N,e)) =m¢ (mod N).
D(m,(N,d)) =m (mod N).

For 512 bits, a few hundred million operations.

RSA is pretty fast.

Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.

Decoding.

E(m,(N,e))=m® (mod N).

Decoding.

=m°® (mod N).
=m° (mod N).

Decoding.

=m°® (mod N).
=m° (mod N).

Decoding.

=m°® (mod N).
=m° (mod N).

Decoding.

E(m,(N,e))=m® (mod N).
D(m,(N,d))=m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).

Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want:

Decoding.

E(m,(N,e)) =m® (mod N).
D(m,(N,d))=m9 (mod N).

N=pgandd=e" (mod (p—1)(q—1)).
Want: (m®)? = m®¥ = m (mod N).

Always decode correctly?

E(m,(N,e)) =mé (mod N).

Always decode correctly?

Always decode correctly?

Always decode correctly?

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want:

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— &P~ =1 (mod p)

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— aP-1 =1 (mod p) =

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— gP-1) =1 (mod p) = aklP-1)+1

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)

versus @ (P-1(@-D+1 = g (mod pg).

Always decode correctly?

E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

N=pgandd=e"" (mod (p—1)(g—1)).
Want: (m®€)? = m® = m (mod N).

Another view:
d=e' (mod (p—1)(g—1)) < ed=k(p—1)(g—1)+1.

Consider...
Fermat’s Little Theorem: For prime p, and a# 0 (mod p),
a’'=1 (mod p).

— 2PN =1 (mod p) = &P+ =a (mod p)
versus a¥P-1@= D+ = a (mod pg).

Similar, not same, but useful.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof:

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).

Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a:1):(a-2)-++(a-(p—1)) =1-2::(p—1) modp,

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)--(a-(p-1)=1-2--(p~1) modp,
Since multiplication is commutative.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)--(a-(p-1)=1-2--(p~1) modp,
Since multiplication is commutative.

aP= V(1 (p—1))=(1--(p—1)) modp.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

P O(1-(p-1)=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p,

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

&P V(1 (p=1))=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

&P V(1 (p=1))=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.

Correct decoding...

Fermat’s Little Theorem: For prime p, and a0 (mod p),
a’~'=1 (mod p).
Proof: Consider S={a-1,...,a-(p—1)}.

All different modulo p since a has an inverse modulo p.
S contains representative of {1,...,p—1} modulo p.

(a-1)-(a-2)---(a-(p—1))=1-2---(p—1) modp,
Since multiplication is commutative.

&P V(1 (p=1))=(1-(p~1)) modp.
Each of 2,...(p—1) has an inverse modulo p, solve to get...

a®P =1 modp.

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof:

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a1+bp-1) =

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

& '=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a1—¢—b(p71) = a1 " (ap71)b

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and a# 0 (mod p),

a'=1 (mod p).

Lemma 1: For any prime p and any a, b,
a'ttP-1) = a (mod p)
Proof: If a=0 (mod p), of course.

Otherwise
a'toP-1) = gl (2 1)b = ax(1)? = a (mod p)

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

...Decoding correctness...
Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

..Decoding correctness...
Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.
X1+k(p*1)(Q*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1)(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(Q*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

x1TEP-D@) = x (mod p)

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x (mod p)

x1+k(@=1(-1) _ x is multiple of p and q.

x'HK@=DE-1 _x =0 mod (pq)

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x (mod p)

x1+k(@=1(-1) _ x is multiple of p and q.

x'TH@DP-1) _x =0 mod (pg) = x'K@DFE-1) = x mod pg.

..Decoding correctness...

Lemma 1: For any prime p and any a, b,
a'tt(P-1) = g (mod p)

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p=1(a-1) = x (mod pq)

Let a=x, b= k(p—1) and apply Lemma 1 with modulus q.

X1+k(p*1)(<7*1) =X (mod q)

Let a=x, b=k(q—1) and apply Lemma 1 with modulus p.

XKD = x (mod p)

x1k@=1)(P-1) _ x is multiple of p and q.
x'TH@DP-1) _x =0 mod (pg) = x'K@DFE-1) = x mod pg.

O

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
X1Hk(e-1a1) = x (mod pg)

Theorem: RSA correctly decodes!

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x)?

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

Xed

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

Xed = Xk(p71)(qf1)+1

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
X1+k(p*1)(Q*1) =X (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x89 = xkKP=D@=-D+1 = x (mod pg).

RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)"=x**=x (mod pg),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x®9 = xkKP=D@-D+1 = x (mod pg).

Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime?

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test..

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with gcd(e,(p—1)(g—1)) =1.

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).

Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.

Security of RSA.

Security of RSA.

Security?

1. Alice knows p and g.
2. Bob only knows, N(= pq), and e.

Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.

Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense = factoring algorithm.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve seesit.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...

Signatures using RSA.

|Verisign: |

Amazon Browser.

Signatures using RSA.

| Verisign: |

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)
Browser “knows” Verisign’s public key: Ky, .

Signatures using RSA.

| Verisign: ky, K, |

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C = “l am Amazon. My public Key is Kj.

Signatures using RSA.

| Verisign: ky, K, |

[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.

Signatures using RSA.

| Verisign: ky, K, |

[C,Sv(C)]
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.

Signatures using RSA.

| Verisign: ky, K, |

[C,Sv(C)]
[C,Sv(CO)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Signatures using RSA.

|Verisign: ky, KV|
[C,S/(C)] C=E(Sy(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

Signatures using RSA.

|Verisign: ky, KV|
[C,S/(C)] C=E(Sy(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(Sv(C).Kv)

Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(Sv(C).Kv) = (Sv(C))®

Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C).Kv) = (Su(C))° = (C9)°

Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C).Kv) = (Su(C))? = (C%)° = C*

Signatures using RSA.

|Verisign: ky, KV|
[C.Sv(C)] C=E(Sv(C).ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sv(C))¢ = (CY)® = C% = C (mod N)

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sy(C))¢ = (CY)® = C% = C (mod N)

Valid signature of Amazon certificate C!

Signatures using RSA.

|Verisign: ky, KV|
[C,Sv(C)] C=E(Sv(C),ky)?
[C,Sv(C)]

Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sy(C))¢ = (CY)® = C% = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.

RSA

RSA

Public Key Cryptography:

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:

RSA

Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C

Other Eve.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?

Summary.

Public-Key Encryption.

Summary.

Public-Key Encryption.
RSA Scheme:

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"" (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y) =y (mod N).

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"" (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring = efficiency.

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y) =y (mod N).
Repeated Squaring = efficiency.

Fermat's Theorem = correctness.

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring = efficiency.
Fermat’'s Theorem — correctness.
Good for Encryption

Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring — efficiency.
Fermat’s Theorem = correctness.
Good for Encryption and Signature Schemes.

