CS70: Lecture 11. Outline.

1. RSA system (continued)

1.1 Correctness: Fermat’s Theorem.
1.2 Construction.

2. Signature Schemes.

3. Warnings.
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Bijection is one to one and onto.
Bijection:

f-A—B.
Domain: A, Co-Domain: B.

Versus Range.
E.g. sin (x).

A= B=reals.

Range is [-1,1]. Onto: [-1,1].

Not one-to-one. sin () = sin (0) = 0.

Range Definition always is onto.
Consider f(x) = ax mod m.
f:{0,....m—1}—{0,....m—1}.
Domain/Co-Domain: {0,...,m—1}.
Note: Why? Inverse if and only if f(-) one to one. Same size.
When is it a bijection?
When ged(a,m)is ....7 ... 1.

Not Example: a=2, m=4, f(0) =f(2) =0 (mod 4).
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Isomorphisms.

Bijection:
f(x) = ax (mod m) if ged(a,m) = 1.

Simplified Chinese Remainder Theorem:
There is a unique x (mod mn) where x =a (mod m)and x =b
(mod n) and ged(n,m) =1.

Bijection between (a (mod n),b (mod m)) and x (mod m)n.
Consider m=5, n=9, then if (a,b) = (3,7) then x =43 (mod 45).
Consider (&.,b') =(2,4), then x =22 (mod 45).

Now consider: (a,b)+(&,b') =(0,2).

What is x where x =0 (mod 5) and x =2 (mod 9)?
Try 43+22 =65 =20 (mod 45).

Isomorphism:
the actions under (mod 5), (mod 9)
correspond to actions in (mod 45)!
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Public key crypography.

m = D(E(m,K),k)

Private: k Public: K Message m
(m,K)
Alice Bob
Eve

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?
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Is public key crypto possible?

We don’t really know.
...out we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let N = pq.

Choose e relatively prime to (p—1)(g—1)."

Compute d=e"' mod (p—1)(g—1).

Announce N(=p-q) and e: K = (N, e) is my public key!

Encoding: mod (x¢,N).
Decoding: mod (y9,N).
Does D(E(m)) = m® = m mod N?

Yes!

Typically small, say e = 3.
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Modular Exponentiation: x¥ mod N. All n-bit numbers.
O(n®) time.

Remember RSA encoding/decoding!
E(m,(N,e))=m® (mod N).
D(m,(N,d)) =m? (mod N).

For 512 bits, a few hundred million operations.
Easy, peasey.
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E(m,(N,e))=m® (mod N).
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Similar, not same, but useful.
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a'tt(P-1) = g (mod p)
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Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°) = x* (mod pq),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

Xed = Xk(p71)(qf1)+1
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Lemma 2: For any two different primes p,q and any x, k,
X1+k(p*1)(Q*1) =X (mod pq)

Theorem: RSA correctly decodes!
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whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x89 = xkKP=D@=-D+1 = x  (mod pg).



RSA decodes correctly..

Lemma 2: For any two different primes p,q and any x, k,
x1+k(p-1)(a-1) = x (mod pq)

Theorem: RSA correctly decodes!
Recall

D(E(x)) = (x°)"=x**=x (mod pg),

whereed=1 mod(p—1)(q—1) = ed=1+k(p—1)(g—1)

x®9 = xkKP=D@-D+1 = x  (mod pg).



Construction of keys.. ..

1. Find large (100 digit) primes p and g?



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime?



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test..



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).



Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
2. Choose e with gcd(e,(p—1)(g—1)) =1.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?
Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).



Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.



Construction of keys.. ..

1. Find large (100 digit) primes p and g?

Prime Number Theorem: 7(N) number of primes less than
N.Forall N > 17

7(N)> N/InN.

Choosing randomly gives approximately 1/(In N) chance of
number being a prime. (How do you tell if it is prime? ...
cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with gcd(e,(p—1)(g—1)) =1.
Use gcd algorithm to test.

3. Find inverse d of e modulo (p—1)(g—1).
Use extended gcd algorithm.

All steps are polynomial in O(log N), the number of bits.
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Security of RSA.

Security?

1. Alice knows p and g.

2. Bob only knows, N(= pq), and e.
Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one | know or have heard of admits to knowing how to factor N.
Breaking in general sense = factoring algorithm.
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Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c,
concatenated with random k-bit number r.

Never sends just c.
Again, more work to do to get entire system.
CS161...
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Amazon Browser. K,

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: Ky = (N, e) and ky =d (N = pg.)

Browser “knows” Verisign’s public key: Ky, .

Amazon Certificate: C =*“l am Amazon. My public Key is Kj.”
Versign signature of C: S,(C): D(C,ky) = C? mod N.
Browser receives: [C,y]

Checks E(y,Ky)=C?

E(S/(C),Ky) = (Sy(C))¢ = (CY)® = C% = C (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.
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Public Key Cryptography:
D(E(m,K),k) = (m®)? mod N =m.
Signature scheme:
E(D(C,k),K)=(C%® modN=C



Other Eve.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...



Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ...

and only them?
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Summary.

Public-Key Encryption.

RSA Scheme:

N=pgandd=e"' (mod (p—1)(g—1)).
E(x) = x® (mod N).
D(y)=y? (mod N).

Repeated Squaring — efficiency.
Fermat’s Theorem = correctness.
Good for Encryption and Signature Schemes.



