Today.

Polynomials.
Secret Sharing.
Erasure Coding.

Back to secret sharing: idea of the day

Two points make a line.
Lots of lines go through one point.
Secret message is represented as the y-intercept.
Let’s recall how polynomials work.

Secret Sharing.

Share secret among \(n \) people.
Secrecy: Any \(k - 1 \) knows nothing.
Robustness: Any \(k \) knows secret.
Efficient: Minimize storage.

Illustration: need at least 3 keys to open a bank vault

Polynomials

A polynomial
\[P(x) = \sum_{i=0}^{d} a_i x^i \]
is specified by coefficients \(a_0, \ldots, a_d \).
\(P(x) \) contains point \((a, b)\) if \(b = P(a) \).
Polynomials over reals: \(a_1, \ldots, a_d \in \mathbb{R} \) use \(x \in \mathbb{R} \).
Polynomials \(P(x) \) with arithmetic modulo \(p \): \(a_i \in \{0, \ldots, p-1\} \)
and
\[P(x) = \sum_{i=0}^{d} a_i x^i \pmod{p}, \]
for \(x \in \{0, \ldots, p-1\} \).

\[^{1}\text{A field is a set of elements with addition and multiplication operations, with inverses. } \text{GF}(p) = \{(0, \ldots, p-1)\}_\cdot (\pmod{p}), (\pmod{p})]

Other apps. we’ll see: codes based on polynomials

Polynomial: \(P(x) = a_dx^4 + \cdots + a_0 \)

Line:
\[P(x) = a_1 x + a_0 = mx + b \]

Parabola:
\[P(x) = a_2 x^2 + a_1 x + a_0 = ax^2 + bx + c \]
Two points make a line.

Fact: There is exactly 1 polynomial having degree \(\leq d \) containing \(d + 1 \) points. Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: There is exactly 1 polynomial having degree \(\leq d \) (with arithmetic modulo prime \(p \)) containing \(d + 1 \) pts.

3 points determine a parabola.

Fact: Exactly 1 polynomial having degree \(\leq d \) polynomial contains \(d + 1 \) points. 3

Question: How many parabolas exist that contain exactly 2 distinct points?

A parabola \(P(x) \) containing 2 blue points can contain any \((0,y)\)!

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 polynomial having degree \(\leq d \) with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0,\ldots,p-1\} \)
1. Choose \(a_0 = s \), and random \(a_1,\ldots,a_{d-1} \).
2. Let \(P(x) = a_{d-1}x^d + \cdots + a_1x + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i,P(i)) \mod p\).

Robustness: Any \(k \) shares gives secret.
Knowing \(k \) pts \(\implies \) only one \(P(x) \implies \) evaluate \(P(0) \).
Secrecy: Any \(k - 1 \) shares give nothing.
Knowing \(\leq k - 1 \) pts \(\implies \) any \(P(0) \) is possible.

From \(d + 1 \) points to degree \(d \) polynomial?

For a line, \(a_1 x + a_0 = mx + b \) contains points \((1,3)\) and \((2,4)\).
\[
P(1) = m(1) + b = m + b \equiv 3 \pmod{5}
\]
\[
P(2) = m(2) + b = 2m + b \equiv 4 \pmod{5}
\]

Subtract first from second.
\[
m + b = 3 \pmod{5}
\]
\[
m = 1 \pmod{5}
\]

Backsolve: \(b = 2 \pmod{5} \). Secret is 2.
And the line is...
\[
x + 2 \pmod{5}
\]
Delta Polynomials: Concept.

For set of \(x \)-values, \(x_1, \ldots, x_{d+1} \).

\[
\Delta_i(x) =\begin{cases}
1, & \text{if } x = x_i, \\
0, & \text{if } x = x_j \text{ for } j \neq i, \\
anotherwise.
\end{cases}
\] (1)

Given \(d+1 \) points, use \(\Delta_i \) functions to go through points?

\((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\).

Will \(y_1 \Delta_1(x) \) contain \((x_1, y_1)\)?

Will \(y_2 \Delta_2(x) \) contain \((x_2, y_2)\)?

Does \(y_1 \Delta_1(x) + y_2 \Delta_2(x) \) contain \((x_1, y_1)\) and \((x_2, y_2)\)?

See the idea? Function that contains all points?

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).
\]

In general..

Given points: \((x_1, y_1), (x_2, y_2), \ldots, (x_d, y_d)\). Solve...

\[
a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 = y_1 \mod p
\]

\[
a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 = y_2 \mod p
\]

\[
a_{d-1} x^{d-1} + \cdots + a_1 x + a_0 = y_d \mod p
\]

Subtracting 2nd from 3rd yields:

\[
(a_2 + a_1 + a_0 = 2 \mod 5)
\]

\[
3a_1 + 2a_2 = 1 \mod 5
\]

\[
4a_1 + 2a_0 = 2 \mod 5
\]

Subtracting 2nd from 3rd yields: \(a_1 = 1 \).

\[
a_2 = -(1 + 2 - 6) = -5 \equiv 0 \mod 5
\]

So polynomial is \(2x^2 + 1x + 4 \mod 5 \)

Polynomials.

We will work with polynomials with arithmetic modulo \(p \).

Everything has a multiplicative inverse.

Like rationals, reals.

Warning: no calculus, and no order even.

Quadratic

For a quadratic polynomial, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,2); (2,4); (3,0)\).

Plug in points to find equations.

\[
P(1) = a_2 + a_1 + a_0 = 2 \mod 5
\]

\[
P(2) = 4a_2 + 2a_1 + a_0 = 4 \mod 5
\]

\[
P(3) = 4a_2 + 3a_1 + a_0 = 0 \mod 5
\]

\[
a_2 + a_1 + a_0 = 2 \mod 5
\]

\[
3a_1 + 2a_2 = 1 \mod 5
\]

\[
4a_1 + 2a_0 = 2 \mod 5
\]

Another Construction: Lagrange Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1,3); (2,4); (3,0)\).

Find \(\Delta_1(x) \) polynomial contains \((1,1); (2,0); (3,0)\).

Try \((x-2)(x-3) \mod 5\).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Do!!

So “divide by 2” or multiply by 3.

\[
\Delta_1(x) = (x-2)(x-3) \mod 5
\]

\[
\Delta_2(x) = (x-1)(x-3) \mod 5
\]

\[
\Delta_3(x) = (x-1)(x-2) \mod 5
\]

But wanted to hit \((1,3); (2,4); (3,0)\).

\[
P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)
\]

Same as before?

...after a lot of calculations... \(P(x) = 2x^2 + 1x + 4 \mod 5 \).

The same as before!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 polynomial having degree \(\leq d \) with arithmetic modulo prime \(p \) contains \(d+1 \) pts.

Proof of at least one polynomial:

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i} (x-x_j)}{\prod_{j \neq i} (x_i-x_j)}
\]

Numerator is 0 at \(x_i \neq x_j \).

Denominator makes it 1 at \(x_i \).

And...

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x)
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})\). Degree \(d \) polynomial!

Construction proves the existence of a polynomial!
Example.
\[\Delta_i(x) = \prod_{j \neq i} (x - x_j). \]
Degree 1 polynomial, \(P(x) \), that contains (1,3) and (3,4)?

Work modulo 5.
\[\Delta_1(x) \] contains (1,1) and (3,0).
\[\Delta(x) = \frac{1 - 3}{2} = \frac{4}{2} = 2x - 6 = 2x + 4 \mod 5. \]
For a quadratic, \(a_2x^2 + a_1x + a_0 \) hits (1,3);(2,4);(3,0).

Work modulo 5.
Find \(\Delta_1(x) \) polynomial contains (1,1);(2,0);(3,0).
\[\Delta_1(x) = \frac{1 - 2(x - 3)}{2(x - 3)} = \frac{4}{2} = 2x + 4 \mod 5. \]
Put the delta functions together.

Uniqueness.

Uniqueness Fact. At most one degree \(d \) polynomial hits \(d + 1 \) points.

Proof:
Roots fact: Any degree \(d \) polynomial has at most \(d \) roots.
Assume two different polynomials \(Q(x) \) and \(P(x) \) hit the points.
\[R(x) = Q(x) - P(x) \] has \(d + 1 \) roots and is degree \(d \).
Contradiction.

Must prove Roots fact.

In general.

Polynomial Division.

Divide \(4x^2 - 3x + 2 \) by \(x - 3 \) modulo 5.

\[
\begin{array}{r|rrr}
 & 4 & x & + & 4 \\
\hline
 x - 3 & | 4x & 2 & - & 3 \\
 & 4x & 2 & - & 2x \\
 & & 4x & + & 2 \\
 & & 4x & - & 2 \\
 & & & - & 4 \\
\end{array}
\]

\(4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \mod 5 \)

In general, divide \(P(x) \) by \((x - a) \) gives \(Q(x) \) and remainder \(r \).
That is, \(P(x) = (x - a)Q(x) + r \)

Where have we seen this concept before? (Hint: CRT)

My love is won. Zero and one. Nothing done.

Find \(x = a \mod m \) and \(x = b \mod n \) where \(\gcd(m,n)=1 \).
Solution: \(x = au + bv \), where \(u = 0 \mod n \) and \(u = 1 \mod m \)
\(v = 1 \mod n \) and \(v = 0 \mod m \)

Similar deal here with the Delta polynomials in Lagrange interpolation.

Only \(d \) roots.

Lemma 1: \(P(x) \) has root \(a \) iff \(P(x)/(x-a) \) has remainder \(0 \):
\[P(x) = (x-a)Q(x). \]

Proof: \(P(x) = (x-a)Q(x) + r. \)
Plugin \(a: P(a) = r. \)
It is a root if and only if \(r = 0 \).

Lemma 2: \(P(x) \) has \(d \) roots; \(n_1, \ldots ,n_d \) then
\[P(x) = \prod_{i=1}^{d} (x-n_i). \]

Proof Sketch: By induction.

Induction Step: \(P(x) = (x-n_k)Q(x) \) by Lemma 1. \(Q(x) \) has smaller degree so use the induction hypothesis.
\(d + 1 \) roots implies degree is at least \(d + 1 \).

Roots fact: Any degree \(d \) polynomial has at most \(d \) roots.
Finite Fields
Proof works for reals, rationals, and complex numbers.
...but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime \(p \) has multiplicative inverses...
...and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime \(m \) is a finite field denoted by \(\mathbb{F}_m \) or \(\text{GF}(m) \).
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

History lesson: Evariste Galois (1811-1832)

Modular Arithmetic Fact: There exists exactly one polynomial having degree \(\leq d \) over \(\text{GF}(p) \), \(P(x) \), that hits \(d+1 \) points.

Shamir’s \(k \) out of \(n \) Scheme:
Secret \(s \in \{0,\ldots,p-1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1,\ldots,a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i,P(i) \mod p)\).

Robustness: Any \(k \) knows secret.
Knowing \(k \) pts, only one \(P(x) \), evaluate \(P(0) \).
Secrecy: Any \(k-1 \) knows nothing.
Knowing \(\leq k-1 \) pts, any \(P(0) \) is possible.

Secret Sharing

Minimality.
Need \(p > n \) to hand out \(n \) shares: \(P(1) \ldots P(n) \).
For \(b \)-bit secret, must choose a prime \(p > 2^b \).
Theorem: There is always a prime between \(n \) and \(2n \).
Chebyshev said it.
And I say it again.
There is always a prime
Between \(n \) and \(2n \).
Working over numbers within 1 bit of secret size. Minimality.
With \(k \) shares, reconstruct polynomial, \(P(x) \).
With \(k-1 \) shares, any of \(p \) values possible for \(P(0) \)!
(Almost) any \(b \)-bit string possible!
(Almost) the same as what is missing: one \(P(i) \).

Runtime.
Runtime: polynomial in \(k \), \(n \), and \(\log p \).
1. Evaluate degree \(k-1 \) polynomial \(n \) times using \(\log p \)-bit numbers.
2. Reconstruct secret by solving system of \(k \) equations using \(\log p \)-bit arithmetic.
Erasure Codes.

Satellite

3 packet message. So send 6!

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

Lose 3 out 6 packets.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

GPS device

Gets packets 1, 1, and 3.

Solution Idea.

n packet message, channel that loses k packets.

Must send $n + k$ packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree $n - 1$ polynomial.

Alright!!!!!!

Use polynomials.

Information Theory.

Size: Can choose a prime between $2^b - 1$ and 2^b.

(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, $O(n)$ operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Coding: Each packet has size $1/n$ of the whole message.

Erasure Code: Example.

Send message of 1, 4, and 4.

Make polynomial with $P(1) = 1$, $P(2) = 4$, $P(3) = 4$.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

$P(x) = x^2$ (mod 5)

$P(1) = 1$, $P(2) = 4$, $P(3) = 9 = 4$ (mod 5)

Send $(0, P(0)) \ldots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5))$ (mod 5)
Example

Make polynomial with $P(1) = 1$, $P(2) = 4$, $P(3) = 4$.
Modulo 7 to accommodate at least 6 packets.
Linear equations:

\[
P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}
\]
\[
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}
\]
\[
P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}
\]

6a_1 + 3a_0 = 2 (mod 7), 5a_1 + 4a_0 = 0 (mod 7)
\[
a_1 = 2$ a_0$ = 2 (mod 7) a_1 = 4 (mod 7) a_2 = 2 (mod 7)
\]
\[
P(x) = 2x^2 + 4x + 2
\]
$P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send
Packets: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)
Notice that packets contain “x-values”.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: $(i, R(i))$. Lagrange or linear equations.

P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}
P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}

Channeling Sahai ...

P(x) = 2x^2 + 4x + 2
Message? $P(1) = 1$, $P(2) = 4$, $P(3) = 4$.

Questions for Review

You want to encode a secret consisting of 1,4,4.
How big should modulus be? Larger than 144 and prime!
You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.
How big should modulus be? Larger than 8 and prime!
Send n packets b-bit packets, with k errors.
Modulus should be larger than $n + k$ and also larger than 2^b.

Polynomials.

- ..give Secret Sharing.
- ..give Erasure Codes.

Error Correction:
Noisy Channel: corrupts k packets. (rather than loss.)
Additional Challenge: Finding which packets are corrupt.