Today.

Polynomials.

Secret Sharing.

Erasure Coding.

Back to secret sharing: idea of the day

Two points make a line.

Lots of lines go through one point.

Secret message is represented as the y-intercept.

Let's recall how polynomials work.

Secret Sharing.

Share secret among n people.

Secrecy: Any k-1 knows nothing. **Robustness:** Any k knows secret. **Efficient:** Minimize storage.

Illustration: need at least 3 keys to open a bank vault

Polynomials

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$.

P(x) contains point (a,b) if b = P(a).

Polynomials over reals: $a_1, ..., a_d \in \Re$, use $x \in \Re$.

Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, \dots, p-1\}$ and

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$

for $x \in \{0, ..., p-1\}$.

Other apps. we'll see: codes based on polynomials

Polynomial: $P(x) = a_d x^4 + \cdots + a_0$

Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$

¹A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, ..., p-1\}, + \pmod{p}, * \pmod{p}).$

Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$

Finding an intersection.

$$x+2\equiv 3x+1\pmod{5}$$

$$\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$$

3 is multiplicative inverse of 2 modulo 5.

Good when modulus is prime!!

2 points not enough.

Question: How many parabolas exist that contain exactly 2 distinct

A parabola P(x) containing 2 blue points can contain any(0,y)!

Two points make a line.

Fact: There is exactly 1 polynomial having degree $\leq d$ containing d+1 points. ²

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: There is exactly 1 polynomial having degree $\leq d$ (with arithmetic modulo prime p) containing d+1 pts.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d+1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \dots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret.

Knowing k pts \implies only one $P(x) \implies$ evaluate P(0).

Secrecy: Any k-1 shares give nothing. Knowing $\leq k-1$ pts \implies any P(0) is possible.

3 points determine a parabola.

Fact: Exactly 1 polynomial having degree $\leq d$ polynomial contains d+1 points. ³

From d+1 points to degree d polynomial?

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

 $x+2 \mod 5$

²Points with different x values.

 $^{^{3}}$ Points with different x values.

Quadratic

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$3a_1 + 2a_0 \equiv 1 \pmod{5}$$

$$4a_1 + 2a_0 \equiv 2 \pmod{5}$$
 Subtracting 2nd from 3rd yields: $a_1 = 1$.
$$a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$$

$$a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}$$
. So polynomial is $2x^2 + 1x + 4 \pmod{5}$

Polynomials.

We will work with polynomials with arithmetic modulo p.

Everything has a multiplicative inverse.

Like rationals, reals.

Warning: no calculus, and no order even.

In general..

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1}+\cdots+a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1}+\cdots+a_0 \equiv y_2 \pmod{p}$
 \vdots
 $a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d+1 pts.

Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
 (1

Given d+1 points, use Δ_i functions to go through points?

$$(x_1,y_1),\ldots,(x_{d+1},y_{d+1}).$$

Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2\Delta_2(x)$ contain (x_2, y_2) ?

Does $y_1\Delta_1(x) + y_2\Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \ldots + y_{d+1} \Delta_{d+1}(x).$$

Another Construction: Lagrange Interpolation!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

So "Divide by 2" or multiply by 3.

 $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

 $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0);(2,1);(3,0).

 $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0);(2,0);(3,1).

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

The same as before!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d+1 pts.

Proof of at least one polynomial:

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{i \neq i} (x_i - x_i)}.$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points (x_1, y_1) ; (x_2, y_2) \cdots (x_{d+1}, y_{d+1}) . Degree d polynomial!

Construction proves the existence of a polynomial!

Example.

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\begin{array}{l} \Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} \\ = 2(x-3) = 2x - 6 = 2x + 4 \pmod{5}. \end{array}$$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x-2)(x-3)$$
= 3x² + 3 (mod 5)

Put the delta functions together.

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits d+1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.

In general.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And.

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of the polynomial!

Polynomial Division.

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$$

In general, divide P(x) by (x - a) gives Q(x) and remainder r.

That is,
$$P(x) = (x - a)Q(x) + r$$

Where have we seen this concept before? (Hint: CRT)

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

Solution: x = au + bv, where

 $u = 0 \pmod{n}$ and $u = 1 \pmod{m}$ $v = 1 \pmod{n}$ and $v = 0 \pmod{m}$

Similar deal here with the Delta polynomials in Lagrange interpolation.

Only d roots.

Lemma 1: P(x) has root a iff P(x)/(x-a) has remainder 0:

P(x)=(x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r.

Plugin a: P(a) = r.

It is a root if and only if r = 0.

Lemma 2: P(x) has d roots; r_1, \ldots, r_d then

 $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d).$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.

..but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses..

..and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Secret Sharing

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d+1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k knows secret.

Knowing k pts, only one P(x), evaluate P(0).

Secrecy: Any k-1 knows nothing.

Knowing $\leq k-1$ pts, any P(0) is possible.

History lesson: Evariste Galois (1811-1832)

Minimality.

Need p > n to hand out n shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it,

And I say it again,

There is always a prime

Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any b-bit string possible!

(Almost) the same as what is missing: one P(i).

History lesson: Evariste Galois (1811-1832)

Runtime.

Runtime: polynomial in k, n, and $\log p$.

- Evaluate degree k 1 polynomial n times using log p-bit numbers.
- 2. Reconstruct secret by solving system of k equations using $\log p$ -bit arithmetic.

Satellite n packet message. So send n+k!Lose k packets. Any n packet is enough! n packet message. Optimal.

Solution Idea.

n packet message, channel that loses k packets.

Must send n+k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any n point values allow reconstruction of degree n-1 polynomial.

Alright!!!!!

Use polynomials.

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret. Coding: Each packet has size 1/n of the whole message.

Erasure Codes.

Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n+k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, ..., m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size b.

2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send P(1), ..., P(n+k).

Any n of the n+k packets gives polynomial ...and message!

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why?
$$(0, P(0)) = (5, P(5)) \pmod{5}$$

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets.

Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$

$$a_1 = 2a_0. \ a_0 = 2 \pmod{7}, \ a_1 = 4 \pmod{7}, \ a_2 = 2 \pmod{7}$$

$$P(x) = 2x^2 + 4x + 2$$

$$P(1) = 1, \ P(2) = 4, \ \text{and} \ P(3) = 4$$
 Send Packets: $(1,1), (2,4), (3,4), (4,7), (5,2), (6,0)$ Notice that packets contain "x-values".

Polynomials.

- ..give Secret Sharing.
- ...give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.) Additional Challenge: Finding which packets are corrupt.

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)

Recieve: (1,1) (3,4), (6,0)

Reconstruct?

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$
 $P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$

Channeling Sahai ...

$$P(x) = 2x^2 + 4x + 2$$

Message? P(1) = 1, P(2) = 4, P(3) = 4.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

Send n packets b-bit packets, with k errors.

Modulus should be larger than n+k and also larger than 2^b .