

Polynomials. Secret Sharing.

Polynomials. Secret Sharing. Erasure Coding.

Share secret among *n* people.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing. **Robustness:** Any *k* knows secret.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing. Robustness: Any k knows secret. Efficient: Minimize storage.

Share secret among *n* people.

Secrecy: Any k - 1 knows nothing. **Robustness:** Any k knows secret. **Efficient:** Minimize storage.

Illustration: need at least 3 keys to open a bank vault

Other apps. we'll see: codes based on polynomials

TYPE OF CODE	REED-SOLOMON	LOW-DENSITY PARITY-CHECK (LDPC)	TURBO
APPLICA- TIONS			
	DATA STORAGE (CD/DVD)	WIFI, BROADCASTING	CELLULAR (3G, 4G), SATELLITE COMMUNICATIONS

Two points make a line.

Two points make a line.

Lots of lines go through one point.

Two points make a line.

Lots of lines go through one point.

Secret message is represented as the y-intercept.

Two points make a line.

Lots of lines go through one point.

Secret message is represented as the y-intercept.

Let's recall how polynomials work.

Two points make a line.

Lots of lines go through one point.

Secret message is represented as the y-intercept.

Let's recall how polynomials work.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \ldots a_0$.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \dots a_0$. P(x) **contains** point (a,b) if b = P(a).

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \ldots a_0$.

P(x) contains point (a, b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \mathfrak{R}$, use $x \in \mathfrak{R}$.

A polynomial

$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0.$$

is specified by **coefficients** $a_d, \ldots a_0$.

P(x) contains point (a, b) if b = P(a).

Polynomials over reals: $a_1, \ldots, a_d \in \Re$, use $x \in \Re$.

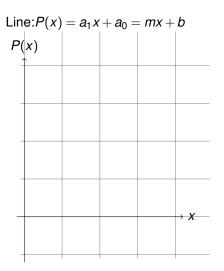
Polynomials P(x) with arithmetic modulo p: ¹ $a_i \in \{0, ..., p-1\}$ and

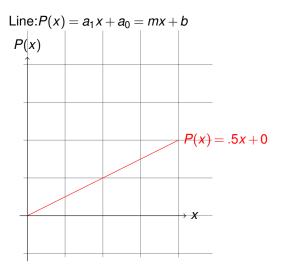
$$P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p},$$

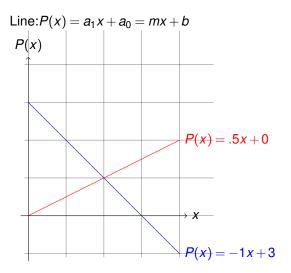
for $x \in \{0, \dots, p-1\}.$

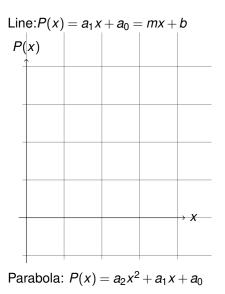
Line: $P(x) = a_1 x + a_0$

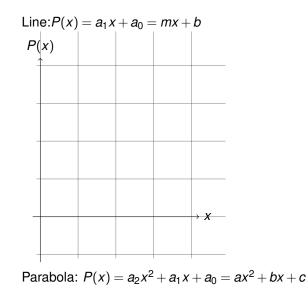
Line: $P(x) = a_1x + a_0 = mx + b$

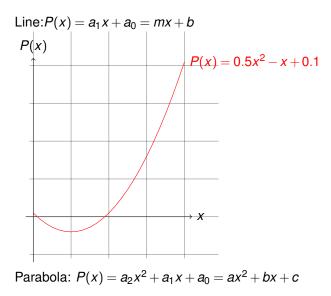


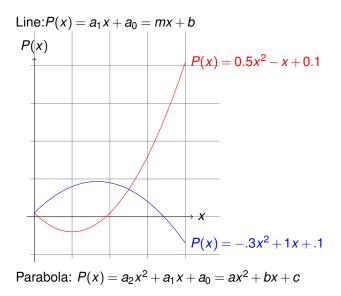


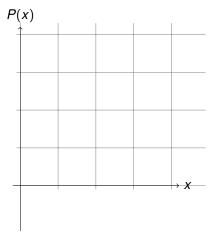


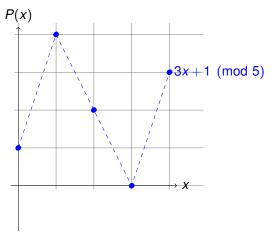


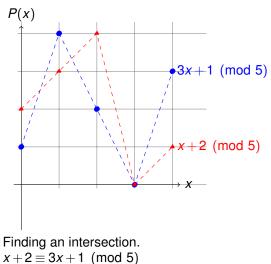




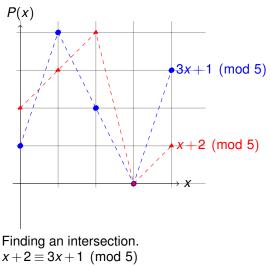






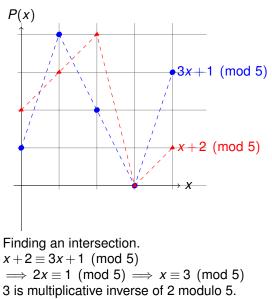


 \implies 2*x* \equiv 1 (mod 5)



 \implies 2x \equiv 1 (mod 5) \implies x \equiv 3 (mod 5) 2 is multiplicative inverse of 2 module 5

3 is multiplicative inverse of 2 modulo 5.



Good when modulus is prime!!

Two points make a line.

Fact: There is exactly 1 polynomial having degree $\leq d$ containing d+1 points.²

²Points with different x values.

Two points make a line.

Fact: There is exactly 1 polynomial having degree $\leq d$ containing d+1 points.²

Two points specify a line.

²Points with different x values.

Fact: There is exactly 1 polynomial having degree $\leq d$ containing d+1 points.²

Two points specify a line. Three points specify a parabola.

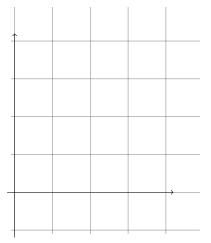
²Points with different x values.

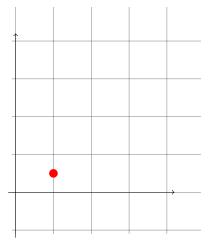
Fact: There is exactly 1 polynomial having degree $\leq d$ containing d+1 points.²

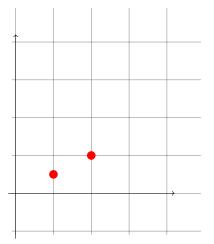
Two points specify a line. Three points specify a parabola.

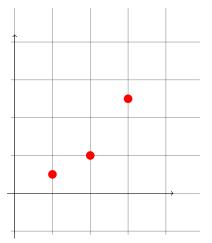
Modular Arithmetic Fact: There is exactly 1 polynomial having degree $\leq d$ (with arithmetic modulo prime *p*) containing d + 1 pts.

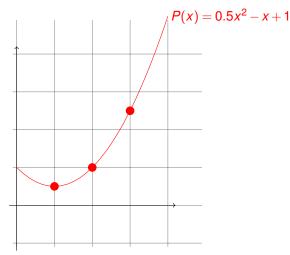
²Points with different x values.

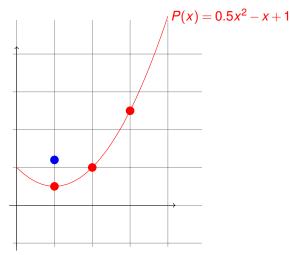


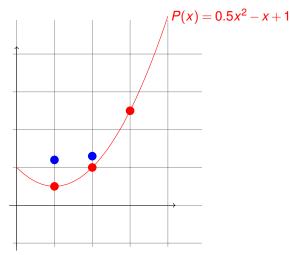


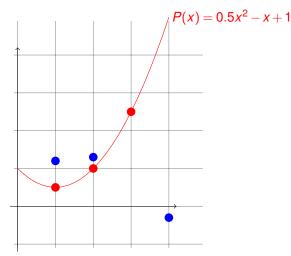


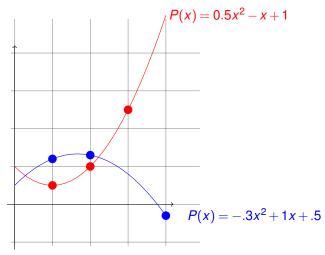








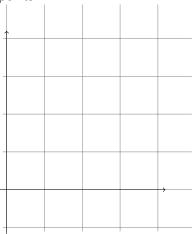




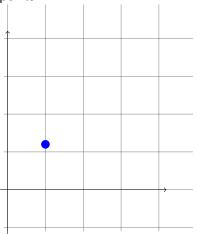
³Points with different x values.

Question: How many parabolas exist that contain exactly 2 distinct points?

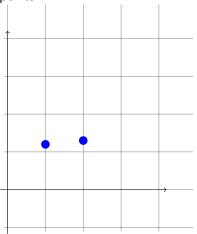
Question: How many parabolas exist that contain exactly 2 distinct points?



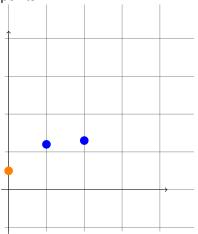
Question: How many parabolas exist that contain exactly 2 distinct points?



Question: How many parabolas exist that contain exactly 2 distinct points?



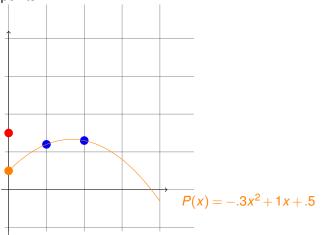
Question: How many parabolas exist that contain exactly 2 distinct points?



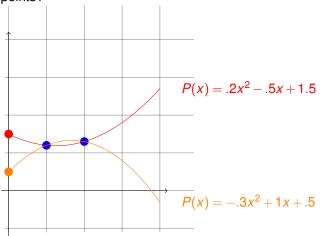
Question: How many parabolas exist that contain exactly 2 distinct points?



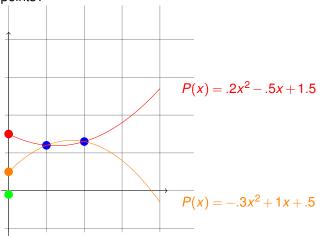
Question: How many parabolas exist that contain exactly 2 distinct points?



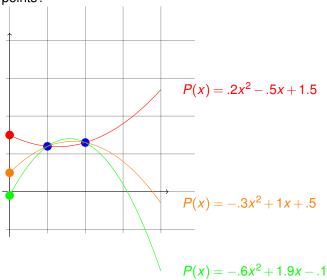
Question: How many parabolas exist that contain exactly 2 distinct points?



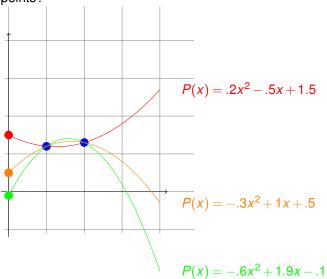
Question: How many parabolas exist that contain exactly 2 distinct points?



Question: How many parabolas exist that contain exactly 2 distinct points?



Question: How many parabolas exist that contain exactly 2 distinct points?



Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Shamir's k out of n Scheme:

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, ..., p-1\}$

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts \implies only one P(x)

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0).

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). **Secrecy:** Any *k* – 1 shares give nothing.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). **Secrecy:** Any k - 1 shares give nothing. Knowing $\leq k - 1$ pts

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). **Secrecy:** Any k-1 shares give nothing. Knowing $\leq k-1$ pts \implies any P(0) is possible.

Modular Arithmetic Fact and Secrets

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* shares gives secret. Knowing *k* pts \implies only one $P(x) \implies$ evaluate P(0). **Secrecy:** Any k-1 shares give nothing. Knowing $\leq k-1$ pts \implies any P(0) is possible.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

P(1) =

$$P(1) = m(1) + b \equiv m + b$$

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second ..

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second ..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$

 $P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$

Subtract first from second..

$$m+b \equiv 3 \pmod{5}$$

 $m \equiv 1 \pmod{5}$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2. And the line is...

 $x+2 \mod 5$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0).

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

 $P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$
$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
$3a_1 + 2a_0$	\equiv	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
3 <i>a</i> ₁ +2 <i>a</i> ₀	≡	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	≡	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
$3a_1 + 2a_0$	≡	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1}$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

 $a_2 + a_1 + a_0 \equiv 2 \pmod{5}$ $3a_1 + 2a_0 \equiv 1 \pmod{5}$ $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1})$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	\equiv	2 (mod 5)
$3a_1 + 2a_0$	\equiv	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3)$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$a_2 + a_1 + a_0$	≡	2 (mod 5)
$3a_1 + 2a_0$	\equiv	1 (mod 5)
4 <i>a</i> ₁ +2 <i>a</i> ₀	\equiv	2 (mod 5)

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $3a_1 + 2a_0 \equiv 1 \pmod{5}$
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}$

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $3a_1 + 2a_0 \equiv 1 \pmod{5}$
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}$.

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2); (2,4); (3,0). Plug in points to find equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5}$$

$$P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}$$

$$a_2 + a_1 + a_0 \equiv 2 \pmod{5}$$

 $3a_1 + 2a_0 \equiv 1 \pmod{5}$
 $4a_1 + 2a_0 \equiv 2 \pmod{5}$

Subtracting 2nd from 3rd yields: $a_1 = 1$. $a_0 = (2-4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}$ $a_2 = 2-1-4 \equiv 2 \pmod{5}$.

So polynomial is $2x^2 + 1x + 4 \pmod{5}$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$
$$a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$$

•

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$

 $a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$

•

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$
$$a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$$

. .

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

As long as solution exists and it is unique! And...

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$
$$a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$$

. .

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

As long as solution exists and it is unique! And...

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$. Solve...

$$a_{k-1}x_1^{k-1} + \dots + a_0 \equiv y_1 \pmod{p}$$
$$a_{k-1}x_2^{k-1} + \dots + a_0 \equiv y_2 \pmod{p}$$

•

$$a_{k-1}x_k^{k-1}+\cdots+a_0 \equiv y_k \pmod{p}$$

Will this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime p contains d + 1 pts.

Another Construction: Lagrange Interpolation!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0). Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0). Try $(x-2)(x-3) \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1). But wanted to hit (1,3); (2,4); (3,0)!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try $(x-2)(x-3) \pmod{5}$.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1).

But wanted to hit (1,3); (2,4); (3,0)!

 $P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations...

For a quadratic,
$$a_2x^2 + a_1x + a_0$$
 hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try
$$(x-2)(x-3) \pmod{5}$$
.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1).

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$.

For a quadratic,
$$a_2x^2 + a_1x + a_0$$
 hits (1,3); (2,4); (3,0).

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

Try
$$(x-2)(x-3) \pmod{5}$$
.

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!! So "Divide by 2" or multiply by 3. $\Delta_1(x) = (x-2)(x-3)(3) \pmod{5}$ contains (1,1); (2,0); (3,0). $\Delta_2(x) = (x-1)(x-3)(4) \pmod{5}$ contains (1,0); (2,1); (3,0). $\Delta_3(x) = (x-1)(x-2)(3) \pmod{5}$ contains (1,0); (2,0); (3,1).

But wanted to hit (1,3); (2,4); (3,0)!

$$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$$
 works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \mod 5$. The same as before!

We will work with polynomials with arithmetic modulo *p*.

We will work with polynomials with arithmetic modulo *p*. Everything has a multiplicative inverse.

Polynomials.

We will work with polynomials with arithmetic modulo *p*.

Everything has a multiplicative inverse.

Like rationals, reals.

Polynomials.

We will work with polynomials with arithmetic modulo *p*.

Everything has a multiplicative inverse.

Like rationals, reals.

Warning: no calculus,

Polynomials.

We will work with polynomials with arithmetic modulo *p*.

Everything has a multiplicative inverse.

Like rationals, reals.

Warning: no calculus, and no order even.

For set of *x*-values, x_1, \ldots, x_{d+1} .

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \end{cases}$$

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ? Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ? Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ? Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ? Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ? See the idea?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ? Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ?

Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ?

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x)$$

For set of *x*-values, x_1, \ldots, x_{d+1} .

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$
(1)

Given d + 1 points, use Δ_i functions to go through points? $(x_1, y_1), \dots, (x_{d+1}, y_{d+1}).$ Will $y_1 \Delta_1(x)$ contain (x_1, y_1) ? Will $y_2 \Delta_2(x)$ contain (x_2, y_2) ?

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1) ? and (x_2, y_2) ?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \dots + y_{d+1} \Delta_{d+1}(x).$$

There exists a polynomial...

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}$$

Numerator is 0 at $x_j \neq x_i$.

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \dots + y_{d+1} \Delta_{d+1}(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1}).$

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1\Delta_1(x) + y_2\Delta_2(x) + \cdots + y_{d+1}\Delta_{d+1}(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree *d* polynomial!

Modular Arithmetic Fact: Exactly 1 polynomial having degree $\leq d$ with arithmetic modulo prime *p* contains d + 1 pts.

Proof of at least one polynomial: Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(\mathbf{x}) = \frac{\prod_{j \neq i} (\mathbf{x} - \mathbf{x}_j)}{\prod_{j \neq i} (\mathbf{x}_i - \mathbf{x}_j)}$$

Numerator is 0 at $x_i \neq x_i$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree *d* polynomial!

Construction proves the existence of a polynomial!

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)?

$$\Delta_i(x) = rac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3)$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3) = 2x-6$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)}$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2}$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$

= 2(x-3) = 2x-6 = 2x+4 (mod 5).

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x-2)(x-3)$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3) = 2x-6 = 2x+4 \pmod{5}.$$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x-2)(x-3)$$
$$= 3x^2 + 3 \pmod{5}$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3) = 2x-6 = 2x+4 \pmod{5}.$$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x-2)(x-3)$$
$$= 3x^2 + 3 \pmod{5}$$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Degree 1 polynomial, P(x), that contains (1,3) and (3,4)? Work modulo 5.

 $\Delta_1(x)$ contains (1,1) and (3,0).

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2} = 2(x-3) = 2x-6 = 2x+4 \pmod{5}.$$

For a quadratic, $a_2x^2 + a_1x + a_0$ hits (1,3); (2,4); (3,0).

Work modulo 5.

Find $\Delta_1(x)$ polynomial contains (1,1); (2,0); (3,0).

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x-2)(x-3)$$
$$= 3x^2 + 3 \pmod{5}$$

Put the delta functions together.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Numerator is 0 at $x_j \neq x_i$.

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Numerator is 0 at $x_j \neq x_j$.

Denominator makes it 1 at x_i .

Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k).$

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Numerator is 0 at $x_j \neq x_j$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \dots + y_k \Delta_k(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Given points: (x_1, y_1) ; $(x_2, y_2) \cdots (x_k, y_k)$.

$$\Delta_i(x) = \frac{\prod_{j\neq i}(x-x_j)}{\prod_{j\neq i}(x_i-x_j)}.$$

Numerator is 0 at $x_j \neq x_j$.

Denominator makes it 1 at x_i .

And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)$.

Construction proves the existence of the polynomial!

My love is won. Zero and one. Nothing done.

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

Solution: x = au + bv, where

Where have we seen this concept before? (Hint: CRT)

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

Solution: x = au + bv, where

 $u = 0 \pmod{n}$ and $u = 1 \pmod{m}$

Where have we seen this concept before? (Hint: CRT)

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

Solution: x = au + bv, where

 $u = 0 \pmod{n}$ and $u = 1 \pmod{m}$ $v = 1 \pmod{n}$ and $v = 0 \pmod{m}$ My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

Solution: x = au + bv, where

$$u = 0 \pmod{n}$$
 and $u = 1 \pmod{m}$
 $v = 1 \pmod{n}$ and $v = 0 \pmod{m}$

Similar deal here with the Delta polynomials in Lagrange interpolation.

My love is won. Zero and one. Nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

Solution: x = au + bv, where

$$u = 0 \pmod{n}$$
 and $u = 1 \pmod{m}$
 $v = 1 \pmod{n}$ and $v = 0 \pmod{m}$

Similar deal here with the Delta polynomials in Lagrange interpolation.

Uniqueness Fact. At most one degree *d* polynomial hits d+1 points.

Uniqueness Fact. At most one degree d polynomial hits d + 1 points. **Proof:**

Uniqueness Fact. At most one degree d polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

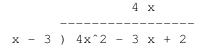
Uniqueness Fact. At most one degree *d* polynomial hits d + 1 points. **Proof:**

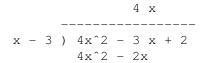
Roots fact: Any degree *d* polynomial has at most *d* roots.

Assume two different polynomials Q(x) and P(x) hit the points.

R(x) = Q(x) - P(x) has d + 1 roots and is degree d. Contradiction.

Must prove Roots fact.





$$\begin{array}{r} 4 \quad x + 4 \\ x - 3 \quad) \quad 4x^2 - 3 \quad x + 2 \\ 4x^2 - 2x \\ ----- \\ 4x + 2 \end{array}$$

$$\begin{array}{r} 4 \quad x + 4 \\ ------ \\ x - 3 \end{array}) \quad 4x^2 - 3 \quad x + 2 \\ 4x^2 - 2x \\ ----- \\ 4x + 2 \\ 4x - 2 \end{array}$$

$$4 x + 4$$

$$x - 3) 4x^{2} - 3 x + 2$$

$$4x^{2} - 2x$$

$$------$$

$$4x + 2$$

$$4x - 2$$

$$------$$

$$4$$

$$4 x + 4 r 4$$

$$x - 3) 4x^{2} - 3 x + 2$$

$$4x^{2} - 2x$$

$$-----$$

$$4x + 2$$

$$4x - 2$$

$$-----$$

$$4$$

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$4 x + 4 r 4$$

$$x - 3) 4x^{2} - 3 x + 2$$

$$4x^{2} - 2x$$

$$------$$

$$4x + 2$$

$$4x - 2$$

$$------$$

$$4$$

 $4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$\begin{array}{c} 4 \ x + 4 \ r \ 4 \\ x - 3 \) \ 4x^2 - 3 \ x + 2 \\ 4x^2 - 2x \\ ----- \\ 4x + 2 \\ 4x - 2 \\ ----- \\ 4 \end{array}$$

 $4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$ In general, divide P(x) by (x - a) gives Q(x) and remainder r.

Divide $4x^2 - 3x + 2$ by (x - 3) modulo 5.

$$\begin{array}{c} 4 \ x + 4 \ r \ 4 \\ x - 3 \) \ 4x^2 - 3 \ x + 2 \\ 4x^2 - 2x \\ ----- \\ 4x + 2 \\ 4x - 2 \\ ----- \\ 4 \end{array}$$

 $4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$ In general, divide P(x) by (x - a) gives Q(x) and remainder r. That is, P(x) = (x - a)Q(x) + r

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r.

Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x). **Proof:** P(x) = (x-a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; $r_1, ..., r_d$ then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$. **Proof Sketch:** By induction.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$. **Proof Sketch:** By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$. **Proof Sketch:** By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$. **Proof Sketch:** By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Lemma 1: P(x) has root *a* iff P(x)/(x-a) has remainder 0: P(x) = (x-a)Q(x).

Proof: P(x) = (x - a)Q(x) + r. Plugin *a*: P(a) = r. It is a root if and only if r = 0.

Lemma 2: P(x) has *d* roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$. **Proof Sketch:** By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. Q(x) has smaller degree so use the induction hypothesis.

d+1 roots implies degree is at least d+1.

Roots fact: Any degree *d* polynomial has at most *d* roots.

Proof works for reals, rationals, and complex numbers.

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses.

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses. Arithmetic modulo a prime *p* has multiplicative inverses.

Proof works for reals, rationals, and complex numbers. ..but not for integers, since no multiplicative inverses. Arithmetic modulo a prime p has multiplicative inverses. ..and has only a finite number of elements.

Finite Fields

Proof works for reals, rationals, and complex numbers.

- ..but not for integers, since no multiplicative inverses.
- Arithmetic modulo a prime *p* has multiplicative inverses.
- .. and has only a finite number of elements.

Good for computer science.

Finite Fields

Proof works for reals, rationals, and complex numbers.

- ..but not for integers, since no multiplicative inverses.
- Arithmetic modulo a prime p has multiplicative inverses..
- .. and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Finite Fields

Proof works for reals, rationals, and complex numbers.

- ..but not for integers, since no multiplicative inverses.
- Arithmetic modulo a prime p has multiplicative inverses..
- .. and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or GF(m).

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

History lesson: Evariste Galois (1811-1832)

EVARISTE GALOIS

Known for:

- well... Galois' theory
- maths / algebra

Trivia:

- was challenged to a duel he knew he couldn't win
- stayed up all night writing maths?
- Iost the duel

lundi 11 février 2013

History lesson: Evariste Galois (1811-1832)

Évariste Galois

From Wikipedia, the free encyclopedia

"Galois" redirects here. For other uses, see Gallois (disambiguation).

Evariate Galois (French: [wwaikit gal/wai]; 25 October 1811 – 311 May 1832) was a French mathematician born in Bourg-la-Reine. Weils still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, thereby solving a problem standing for 350 years. His work laid the foundations for Galois theory and group theory, we major branches of abstract abstract. and the subfield of Galois connections. He did at age 20 form wounds suffered in a duel.

Contents [hide]
1 Life
1.1 Early life
1.2 Budding mathematicia
1.3 Political firebrand
1.4 Final days
2 Contributions to mathematics
2.1 Algebra
2.2 Galois theory
2.3 Analysis
2.4 Continued fractions
3 See also
4 Notes
5 References
6 External links

Life [edt]

Early life [edit]

Galois was born on 25 October 1811 to Nicolas-Galoria Galois and Al-Meterica Marie (born month)¹¹ His father was a Republican and was a bed of Bourgh-Reners Liberci party. His father became mayor of the Vallega definic Liberci party and the Marie Charlam and the set and the set of Lafa and classical Bireature and was need not been to the sons and the set of Lafa and the set of Lafa and mother grieffer and was need not been to the sons and the set of Lafa and the set of Lafa and the set of Lafa and mother grieffer and was need not been the sons of Lafa and the set of Lafa and th

In October 1999, he extend the Lunde Louis Is Occord, and despite some turnell is the school of the basineses of the term (when should a hundred students uses

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share *i* is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share *i* is point $(i, P(i) \mod p)$.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

- 1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .
- 2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
- 3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any k knows secret.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret. Knowing *k* pts, only one P(x), evaluate P(0). **Secrecy:** Any k - 1 knows nothing.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret. Knowing *k* pts, only one P(x), evaluate P(0). **Secrecy:** Any k - 1 knows nothing. Knowing $\leq k - 1$ pts, any P(0) is possible.

Modular Arithmetic Fact: There exists exactly one polynomial having degree $\leq d$ over GF(p), P(x), that hits d + 1 points.

Shamir's k out of n Scheme:

Secret $s \in \{0, \dots, p-1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1} .

2. Let
$$P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$$
 with $a_0 = s$.

3. Share *i* is point $(i, P(i) \mod p)$.

Robustness: Any *k* knows secret. Knowing *k* pts, only one P(x), evaluate P(0). **Secrecy:** Any k - 1 knows nothing. Knowing $\leq k - 1$ pts, any P(0) is possible.

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

Need p > n to hand out *n* shares: $P(1) \dots P(n)$. For *b*-bit secret, must choose a prime $p > 2^b$.

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*. *Chebyshev said it,*

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again,

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any *b*-bit string possible!

Need p > n to hand out *n* shares: $P(1) \dots P(n)$.

For *b*-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between *n* and 2*n*.

Chebyshev said it, And I say it again, There is always a prime Between n and 2n.

Working over numbers within 1 bit of secret size. Minimality.

With k shares, reconstruct polynomial, P(x).

With k-1 shares, any of p values possible for P(0)!

(Almost) any *b*-bit string possible!

(Almost) the same as what is missing: one P(i).

Runtime.

Runtime.

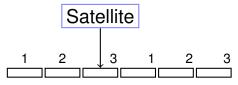
Runtime: polynomial in *k*, *n*, and log *p*.

- 1. Evaluate degree k 1 polynomial *n* times using log *p*-bit numbers.
- 2. Reconstruct secret by solving system of *k* equations using log *p*-bit arithmetic.

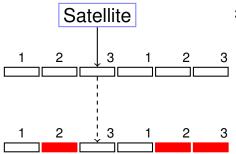
Satellite

3 packet message.

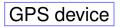
3 packet message.

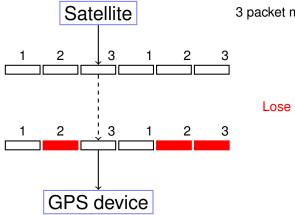


3 packet message. So send 6!

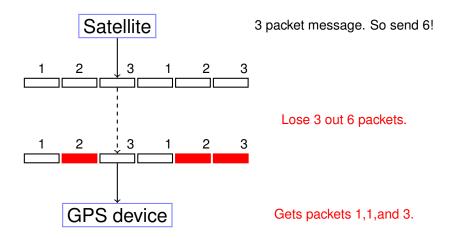


3 packet message. So send 6!





3 packet message. So send 6!



Solution Idea.

n packet message, channel that loses *k* packets.

n packet message, channel that loses *k* packets. Must send n + k packets!

Must send n + k packets!

Any *n* packets

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any *n* point values allow reconstruction of degree n-1 polynomial.

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!!!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!!!!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!!!!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!!!!

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message. Any *n* point values allow reconstruction of degree n-1 polynomial. Alright!!!!!

Use polynomials.

Problem: Want to send a message with *n* packets.

Problem: Want to send a message with *n* packets. **Channel:** Lossy channel: loses *k* packets.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size *b*.

2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send $P(1), \ldots, P(n+k)$.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size *b*.

2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send $P(1), \ldots, P(n+k)$.

Any *n* of the n + k packets gives polynomial ...

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

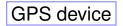
Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size *b*.

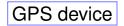
2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send $P(1), \ldots, P(n+k)$.

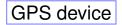
Any *n* of the n + k packets gives polynomial ...and message!

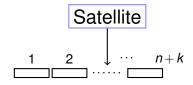


n packet message.

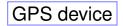


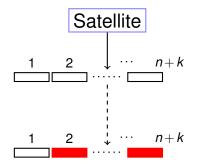
n packet message.



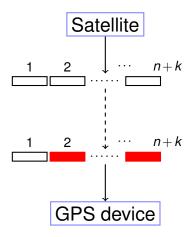


n packet message. So send n + k!

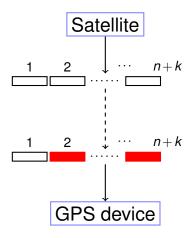




n packet message. So send n + k!



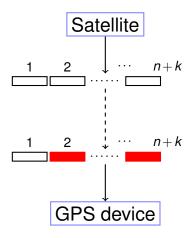
n packet message. So send n + k!



n packet message. So send n+k!

Lose k packets.

Any n packets is enough!

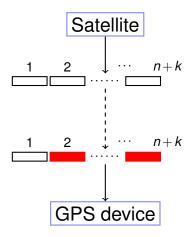


n packet message. So send n + k!

Lose k packets.

Any n packets is enough!

n packet message.



n packet message. So send n + k!

Lose k packets.

Any n packets is enough!

n packet message.

Optimal.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for *x* value.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for *x* value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret. Coding: Each packet has size 1/n of the whole message.

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret. Coding: Each packet has size 1/n of the whole message.

Send message of 1,4, and 4.

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. How?

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. How?

Lagrange Interpolation.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1,$

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4,$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least! Why?

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5)) \pmod{5}$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$
$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}$,

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$P(1) = a_2 + a_1 + a_0$	\equiv	1 (mod 7)
$P(2) = 4a_2 + 2a_1 + a_0$	≡	4 (mod 7)
$P(3) = 2a_2 + 3a_1 + a_0$	≡	4 (mod 7)

 $6a_1 + 3a_0 = 2 \pmod{7}, 5a_1 + 4a_0 = 0 \pmod{7}$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0.$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0. \ a_0 = 2 \pmod{7}$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$

 $a_1 = 2a_0, \ a_0 = 2 \pmod{7} \ a_1 = 4 \pmod{7}$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}, 5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0, a_0 = 2 \pmod{7} a_1 = 4 \pmod{7} a_2 = 2 \pmod{7}$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$
$$a_1 = 2a_0, \ a_0 = 2 \pmod{7} \ a_1 = 4 \pmod{7} \ a_2 = 2 \pmod{7}$$
$$P(x) = 2x^2 + 4x + 2$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$
$$a_1 = 2a_0, \ a_0 = 2 \pmod{7} \ a_1 = 4 \pmod{7} \ a_2 = 2 \pmod{7}$$
$$P(x) = 2x^2 + 4x + 2$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$\begin{aligned} 6a_1 + 3a_0 &= 2 \pmod{7}, \ 5a_1 + 4a_0 &= 0 \pmod{7} \\ a_1 &= 2a_0. \ a_0 &= 2 \pmod{7} \ a_1 &= 4 \pmod{7} \ a_2 &= 2 \pmod{7} \\ P(x) &= 2x^2 + 4x + 2 \\ P(1) &= 1, \end{aligned}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$\begin{aligned} 6a_1 + 3a_0 &= 2 \pmod{7}, \ 5a_1 + 4a_0 &= 0 \pmod{7} \\ a_1 &= 2a_0. \ a_0 &= 2 \pmod{7} \ a_1 &= 4 \pmod{7} \ a_2 &= 2 \pmod{7} \\ P(x) &= 2x^2 + 4x + 2 \\ P(1) &= 1, \ P(2) &= 4, \end{aligned}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send
Packets: $(1,1), (2,4), (3,4), (4,7), (5,2), (6,0)$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send
Packets: $(1,1), (2,4), (3,4), (4,7), (5,2), (6,0)$

Notice that packets contain "x-values".

Send: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0) Recieve: (1,1) (3,4), (6,0)

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: (i, R(i).
```

```
Send: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: (i, R(i)).
Lagrange or linear equations.
```

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: (i, R(i).
```

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$
$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

$$P(x) = 2x^2 + 4x + 2$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

$$P(x) = 2x^2 + 4x + 2$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

$$P(x) = 2x^2 + 4x + 2$$

Message?

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

 $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1,

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

 $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1, P(2) = 4,

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

 $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1, P(2) = 4, P(3) = 4.

You want to encode a secret consisting of 1,4,4.

You want to encode a secret consisting of 1,4,4. How big should modulus be?

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

Send *n* packets *b*-bit packets, with *k* errors.

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

Send *n* packets *b*-bit packets, with *k* errors. Modulus should be larger than n + k and also larger than 2^b .

...give Secret Sharing.

- ...give Secret Sharing.
- ...give Erasure Codes.

- ...give Secret Sharing.
- ...give Erasure Codes.

Error Correction:

- ...give Secret Sharing.
- ...give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.)

- ...give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.