



Solution Idea.

	ets should allow reconstruction of <i>n</i> packet
message.	t values allow reconstruction of degree $n-1$
polynomial.	
Alright!!!!!	
Use polynom	nials.
formation T	heory.
Size: Can ch	oose a prime between 2^{b-1} and 2^{b} .
Size: Can ch (Lose at mos	boose a prime between 2^{b-1} and 2^b . It 1 bit per packet.)
Size: Can ch (Lose at mos But: packets	boose a prime between 2^{b-1} and 2^b . It 1 bit per packet.) need label for x value.
Size: Can ch (Lose at mos But: packets There are Ga	coose a prime between 2^{b-1} and 2^b . It 1 bit per packet.) need label for x value. alois Fields $GF(2^n)$ where one loses nothing.
Size: Can ch (Lose at mos But: packets There are Ga – Can also ru	poose a prime between 2^{b-1} and 2^b . It 1 bit per packet.) need label for x value. alois Fields $GF(2^n)$ where one loses nothing. un the Fast Fourier Transform.
Size: Can ch (Lose at mos But: packets There are Ga – Can also ru In practice, <i>C</i>	boose a prime between 2^{b-1} and 2^b . It 1 bit per packet.) need label for <i>x</i> value. alois Fields $GF(2^n)$ where one loses nothing. un the Fast Fourier Transform. D(n) operations with almost the same redundancy.
Size: Can ch (Lose at mos But: packets There are Ga – Can also ru In practice, C Comparison	boose a prime between 2^{b-1} and 2^b . It 1 bit per packet.) need label for x value. alois Fields $GF(2^n)$ where one loses nothing. In the Fast Fourier Transform. D(n) operations with almost the same redundancy. with Secret Sharing: information content.
Size: Can ch (Lose at mos But: packets There are Ga – Can also ru In practice, C Comparison Secret Sha	boose a prime between 2^{b-1} and 2^b . It 1 bit per packet.) need label for <i>x</i> value. alois Fields $GF(2^n)$ where one loses nothing. un the Fast Fourier Transform. D(n) operations with almost the same redundancy.

Erasure Code: Example.

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. How? Lagrange Interpolation. Linear System. Work modulo 5. $P(x) = x^2 \pmod{5}$ $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$ Send $(0, P(0)) \dots (5, P(5))$. 6 points. Better work modulo 7 at least! Why? $(0, P(0)) = (5, P(5)) \pmod{5}$

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

Send *n* packets *b*-bit packets, with *k* errors. Modulus should be larger than n+k and also larger than 2^b .

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

> $P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$ $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$ $P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$

 $6a_1 + 3a_0 = 2 \pmod{7}$, $5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$ $P(x) = 2x^2 + 4x + 2$ P(1) = 1, P(2) = 4, and P(3) = 4Send Packets: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)Notice that packets contain "x-values".

Polynomials.

▶ ..give Secret Sharing.

...give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.) Additional Challenge: Finding which packets are corrupt.

Bad reception!

Send: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)Recieve: (1,1), (3,4), (6,0)Reconstruct? Format: (i, R(i)). Lagrange or linear equations. $P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$

 $P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$ $P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$

Channeling Sahai ... $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1, P(2) = 4, P(3) = 4.

Error Correction

Satellite 3 packet message. Send 5. 2 3 1 2 1 Α В CDE Corrupts 1 packets. 2 3 1 2 1 A B' C D E GPS device

The Scheme.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

► $P(1) = m_1, ..., P(n) = m_n.$

Comment: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

Slow solution.

Brute Force:

For each subset of n + k points Fit degree n - 1 polynomial, Q(x), to n of them. Check if consistent with n + k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - there is unique degree n-1 polynomial Q(x) that fits n of them
 and where Q(x) is consistent with n+k points
 - $\implies P(x) = Q(x).$

```
Reconstructs P(x) and only P(x)!!
```

Properties: proof.

```
P(x): degree n-1 polynomial.
Send P(1),\ldots,P(n+2k)
Receive R(1), \ldots, R(n+2k)
At most k i's where P(i) \neq R(i).
Properties:
  (1) P(i) = R(i) for at least n + k points i,
  (2) P(x) is unique degree n-1 polynomial
     that contains > n + k received points.
Proof:
(1) Sure. Only k corruptions.
(2) Degree n-1 polynomial Q(x) consistent with n+k points.
 Q(x) agrees with R(i), n+k times.
 P(x) agrees with R(i), n+k times.
 Total points contained by both: 2n+2k. P
                                                   Piaeons.
 Total points to choose from : n+2k. H
                                                   Holes.
  Points contained by both :>n. >P-H Collisions.
 \implies Q(i) = P(i) at n points.
  \rightarrow O(x) - P(x)
```

Example.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

 $p_{2} + p_{1} + p_{0} \equiv 3 \pmod{7}$ $4p_{2} + 2p_{1} + p_{0} \equiv 1 \pmod{7}$ $2p_{2} + 3p_{1} + p_{0} \equiv 6 \pmod{7}$ $2p_{2} + 4p_{1} + p_{0} \equiv 0 \pmod{7}$ $1p_{2} + 5p_{1} + p_{0} \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...o consistent solution! Assume point 2 is wrong and solve...consistent solution!

Example.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{10} 7.$ Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.(Aside: Message in plain text!) Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.P(i) = R(i) for n + k = 3 + 1 = 4 points.

In general..

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots, R(m = n + 2k)$.

```
p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}
```

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where??? Could be anywhere!!! ...so try everywhere. **Runtime:** $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in k!.

How do we find where the bad packets are efficiently?!?!?!

Ditty	Today: Error Correction	The Scheme.
Where oh where can my bad packets be On Friday.	By Welsh-Berlekamp.	Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.Reed-Solomon Code:1. Make a polynomial, $P(x)$ of degree $n - 1$, that encodes message. $* P(1) = m_1, \ldots, P(n) = m_n$. $*$ Comment: could encode with packets as coefficients.2. Send $P(1), \ldots, P(n+2k)$.After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.Properties: $(1) P(i) = R(i)$ for at least $n + k$ points i ,
Properties: proof. P(x): degree $n - 1$ polynomial. Send $P(1),, P(n+2k)$ Receive $R(1),, R(n+2k)$ At most k i's where $P(i) \neq R(i)$. Properties: (1) $P(i) = R(i)$ for at least $n + k$ points i , (2) $P(x)$ is unique degree $n - 1$ polynomial that contains $\geq n + k$ received points. Proof: (1) Sure. Only k corruptions. (2) Degree $n - 1$ polynomial $Q(x)$ consistent with $n + k$ points. Q(x) agrees with $R(i), n + k$ times. P(x) agrees with $R(i), n + k$ times. Total points contained by both: $2n + 2k$. P Pigeons. Total points to choose from $: n + 2k$. H Holes. Points contained by both $:\geq n$. $\geq P - H$ Collisions. $\Rightarrow Q(i) = P(i)$ at n points.	Example. Message: 3,0,6. Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{10} 7$. Send: $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$. (Aside: Message in plain text!) Receive $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$. P(i) = R(i) for $n + k = 3 + 1 = 4$ points.	Slow solution. Brute Force: For each subset of $n+k$ points Fit degree $n-1$ polynomial, $Q(x)$, to n of them. Check if consistent with $n+k$ of the total points. If yes, output $Q(x)$. • For subset of $n+k$ pts where $R(i) = P(i)$, method will reconstruct $P(x)$! • For any subset of $n+k$ pts, 1. there is unique degree $n-1$ polynomial $Q(x)$ that fits n of them 2. and where $Q(x)$ is consistent with $n+k$ points $\implies P(x) = Q(x)$. Reconstructs $P(x)$ and only $P(x)$!!

```
Where oh where can my bad packets be?

E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}

\mathbf{0} \times E(2)(p_{n-1}2^{n-1}+\cdots p_0) \equiv R(2)E(2) \pmod{p}

\vdots

E(m)(p_{n-1}(m)^{n-1}+\cdots p_0) \equiv R(n+2k)E(m) \pmod{p}

Idea: Multiply equation i by 0 if and only if P(i) \neq R(i).

All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh

where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \dots, e_k. (In diagram above, e_1 = 2.)

Error locator polynomial: E(x) = (x - e_1)(x - e_2) \dots (x - e_k).

E(i) = 0 if and only if e_j = i for some j

Multiply equations by E(\cdot). (Above E(x) = (x-2).)

All equations satisfied!!

Finding Q(x) and E(x)?
```

• E(x) has degree $k \dots$

```
E(x) = x^{k} + b_{k-1}x^{k-1} \cdots b_{0}.
\implies k \text{ (unknown) coefficients. Leading coefficient is 1.}
 Q(x) = P(x)E(x) \text{ has degree } n+k-1 \dots
Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots a_{0}
\implies n+k \text{ (unknown) coefficients.}
Number of unknown coefficients: n+2k.
```

Example. Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points... Error locator polynomial: (x - 2). Multiply equation i by (i-2). All equations satisfied! But don't know error locator polynomial! Do know form: (x - e). 4 unknowns $(p_0, p_1, p_2 \text{ and } e)$, 5 nonlinear equations. Solving for Q(x) and E(x)...and P(x)For all points $1, \ldots, i, n+2k = m$, $Q(i) = R(i)E(i) \pmod{p}$ Gives n+2k linear equations. $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \ldots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$ $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$..and n+2k unknown coefficients of Q(x) and E(x)!Solve for coefficients of Q(x) and E(x). Find P(x) = Q(x)/E(x).

..turn their heads each day, $E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$ $E(i)(p_{n-1}i^{n-1}+\cdots p_0) \equiv R(i)E(i) \pmod{p}$ $E(m)(p_{n-1}(n+2k)^{n-1}+\cdots p_0) \equiv R(m)E(m) \pmod{p}$...so satisfied, I'm on my way. m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$. Equations: Q(i) = R(i)E(i).and linear in a_i and coefficients of E(x)! Example. Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ $E(x) = x - b_0$ Q(i) = R(i)E(i). $a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$ $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$ $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$ $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$ $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$ $a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.$ $Q(x) = x^3 + 6x^2 + 6x + 5.$

E(x) = x - 2.

Example: finishing up.	Error Correction: Berlekamp-Welsh
$Q(x) = x^3 + 6x^2 + 6x + 5.$	
E(x) = x - 2. 1 x ² + 1 x + 1	Message: m_1, \ldots, m_n .
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Sender: 1. Form degree $n-1$ polynomial $P(x)$ where $P(i) = m$
$1 x^{2} + 6 x + 5$ $1 x^{2} - 2 x$ $$ $x + 5$ $x - 2$ $$ 0 $P(x) = x^{2} + x + 1$ Message is $P(1) = 3, P(2) = 0, P(3) = 6$. What is $\frac{x-2}{x-2}$? 1 Except at $x = 2$? Hole there?	 Send P(1),,P(n+2k). Receiver: Receive R(1),,R(n+2k). Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x). Compute P(x) = Q(x)/E(x). Compute P(1),,P(n).
Hmmm	Unique solution for $P(x)$
Is there one and only one $P(x)$ from Berlekamp-Welsh procedure? Existence: there is a $P(x)$ and $E(x)$ that satisfy equations.	Uniqueness: any solution $Q'(x)$ and $E'(x)$ have $\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$ Proof: We claim Q'(x)E(x) = Q(x)E'(x) on $n+2k$ values of x . Equation ?? implies ??: Q'(x)E(x) and $Q(x)E'(x)$ are degree $n+2k-1and agree on n+2k pointsE(x)$ and $E'(x)$ have at most k zeros each. Can cross divide at n points. $\Longrightarrow \frac{Q'(x)}{E(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \Longrightarrow$ Same polynomial!

Check your undersanding.

You have error locator polynomial!				
Where oh where have my packets gone wrong?				
Factor? Sure. Check all values? Sure.				
Efficiency? Sure. Only $n+2k$ values. See where it is 0.				

Last bit.

(1)

(2)

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x. **Proof:** Construction implies that

$$\begin{array}{l} Q(i)=R(i)E(i)\\ Q'(i)=R(i)E'(i)\\ \end{array}$$
 for $i\in\{1,\ldots n+2k\}.$
If $E(i)=0$, then $Q(i)=0$. If $E'(i)=0$, then $Q'(i)=0.\\ \Longrightarrow Q(i)E'(i)=Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.
When $E'(i)$ and $E(i)$ are not zero

$$\frac{Q'(i)}{E'(i)}=\frac{Q(i)}{E(i)}=R(i).$$
Cross multiplying gives equality in fact for these points.
Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at x = 2.

	Quick Check. Error Correction. Communicate <i>n</i> packets, with <i>k</i> erasures.	Reed-Solomon code.
Berlekamp-Welsh algorithm decodes correctly when <i>k</i> errors!	How many packets? $n+k$ How to encode? With polynomial, $P(x)$. Of degree? $n-1$ Recover? Reconstruct $P(x)$ with any n points! Communicate n packets, with k errors. How many packets? $n+2k$ Why? k changes to make diff. messages overlap How to encode? With polynomial, $P(x)$. Of degree? $n-1$. Recover? Reconstruct error polynomial, $E(X)$, and $P(x)$! Nonlinear equations. Reconstruct $E(x)$ and $Q(x) = E(x)P(x)$. Linear Equations. Polynomial division! $P(x) = Q(x)/E(x)$! Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!	Problem: Communicate <i>n</i> packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets. Reed-Solomon Code: 1. Make a polynomial, $P(x)$ of degree $n - 1$, that encodes message: coefficients, p_0, \ldots, p_{n-1} . 2. Send $P(1), \ldots, P(n+2k)$.