Today:Error Correction.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

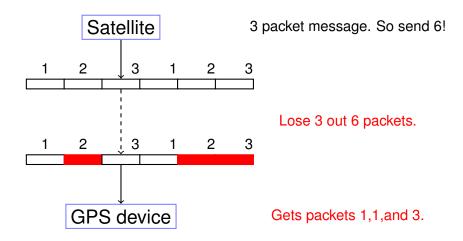
(d+1)-points correspond to exactly one Polynomial.

Lagrange Interpolation \implies there exists a polynomial that hits points.

Polynomial Division \implies there is only one.

Can also reconstruct polynomial using a linear system.

Erasure Codes.



Solution Idea.

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets should allow reconstruction of *n* packet message.

Any *n* point values allow reconstruction of degree n-1 polynomial.

Alright!!!!!!

Use polynomials.

Erasure Code.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

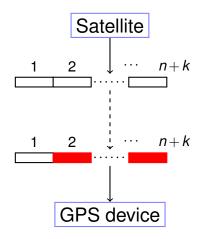
A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

- 1. Choose prime $p \approx 2^b$ for packet size *b*.
- 2. $P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$.
- 3. Send P(1), ..., P(n+k).

Any *n* of the n + k packets gives polynomial ...and message!

Erasure Codes.



n packet message. So send n + k!

Lose k packets.

Any n packets is enough!

n packet message.

Optimal.

Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret. Coding: Each packet has size 1/n of the whole message.

Erasure Code: Example.

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5)) \pmod{5}$

Example

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets.

Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}$, $5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$ $P(x) = 2x^2 + 4x + 2$ P(1) = 1, P(2) = 4, and P(3) = 4

Send

Packets: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)

Notice that packets contain "x-values".

Bad reception!

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0) Recieve: (1,1) (3,4), (6,0) Reconstruct?

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

$$P(x) = 2x^2 + 4x + 2$$

Message? $P(1) = 1, P(2) = 4, P(3) = 4$.

Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

Send *n* packets *b*-bit packets, with *k* errors.

Modulus should be larger than n + k and also larger than 2^{b} .

Polynomials.

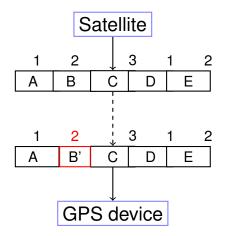
- ..give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Error Correction



3 packet message. Send 5.

Corrupts 1 packets.

The Scheme.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- **2**. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

- (1) P(i) = R(i) for at least n + k points *i*,
- (2) P(x) is unique degree n-1 polynomial that contains $\ge n+k$ received points.

Properties: proof.

 $\begin{array}{l} P(x): \text{ degree } n-1 \text{ polynomial.} \\ \text{Send} \quad P(1), \ldots, P(n+2k) \\ \text{Receive } R(1), \ldots, R(n+2k) \\ \text{At most } k \text{ i's where } P(i) \neq R(i). \end{array}$

Properties:

- (1) P(i) = R(i) for at least n + k points *i*,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n + 2k. *P* Pigeons. Total points to choose from : n + 2k. *H* Holes. Points contained by both $: \ge n$. $\ge P - H$ Collisions. $\implies Q(i) = P(i)$ at *n* points. $\implies Q(x) = P(x)$

Example.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Slow solution.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n + k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Example.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

 $p_{2} + p_{1} + p_{0} \equiv 3 \pmod{7}$ $4p_{2} + 2p_{1} + p_{0} \equiv 1 \pmod{7}$ $2p_{2} + 3p_{1} + p_{0} \equiv 6 \pmod{7}$ $2p_{2} + 4p_{1} + p_{0} \equiv 0 \pmod{7}$ $1p_{2} + 5p_{1} + p_{0} \equiv 3 \pmod{7}$

Assume point 1 is wrong and solve...o consistent solution! Assume point 2 is wrong and solve...consistent solution! In general..

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots, R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$
$$p_{n-1} 2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$p_{n-1}i^{n-1}+\cdots p_0 \equiv R(i) \pmod{p}$$

٠

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where??? Could be anywhere!!! ...so try everywhere. **Runtime:** $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in k!.

How do we find where the bad packets are efficiently?!?!?!

Where oh where can my bad packets be ... On Friday.

Today: Error Correction

By Welsh-Berlekamp.

The Scheme.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- **2**. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

- (1) P(i) = R(i) for at least n + k points *i*,
- (2) P(x) is unique degree n-1 polynomial that contains $\ge n+k$ received points.

Properties: proof.

 $\begin{array}{l} P(x): \text{ degree } n-1 \text{ polynomial.} \\ \text{Send} \quad P(1), \ldots, P(n+2k) \\ \text{Receive } R(1), \ldots, R(n+2k) \\ \text{At most } k \text{ i's where } P(i) \neq R(i). \end{array}$

Properties:

- (1) P(i) = R(i) for at least n + k points *i*,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n + 2k. *P* Pigeons. Total points to choose from : n + 2k. *H* Holes. Points contained by both $: \ge n$. $\ge P - H$ Collisions. $\implies Q(i) = P(i)$ at *n* points. $\implies Q(x) = P(x)$

Example.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Slow solution.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n + k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Where oh where can my bad packets be? $E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$ $\mathbf{0} \times E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$ \vdots $E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

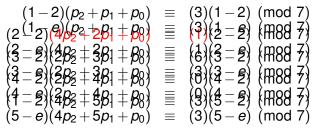
E(i) = 0 if and only if $e_j = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

All equations satisfied!!

Example.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...



Error locator polynomial: (x - 2).

Multiply equation *i* by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

4 unknowns (p_0 , p_1 , p_2 and e), 5 nonlinear equations.

..turn their heads each day,

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$. Equations:

Q(i) = R(i)E(i).

and linear in a_i and coefficients of E(x)!

Finding Q(x) and E(x)?

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

⇒ k (unknown) coefficients. Leading coefficient is 1. ► Q(x) = P(x)E(x) has degree n + k - 1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

Number of unknown coefficients: n + 2k.

Solving for Q(x) and E(x)...and P(x)

For all points $1, \ldots, i, n+2k = m$,

 $Q(i) = R(i)E(i) \pmod{p}$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$

 $a_{n+k-1}(m)^{n+k-1}+\ldots a_0 \equiv R(m)((m)^k+b_{k-1}(m)^{k-1}\cdots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Example.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

$$a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.$$

 $Q(x) = x^3 + 6x^2 + 6x + 5.$
 $E(x) = x - 2.$

Example: finishing up. $Q(x) = x^3 + 6x^2 + 6x + 5.$ E(x) = x - 2. $1 x^2 + 1 x + 1$ ----x - 2) $x^3 + 6x^2 + 6x + 5$ $x^3 - 2 x^2$ $1 x^2 + 6 x + 5$ $1 x^2 - 2 x$ x + 5x - 2 0 $P(x) = x^2 + x + 1$ Message is P(1) = 3, P(2) = 0, P(3) = 6. What is $\frac{x-2}{x-2}$? 1 Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n . Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send $P(1), \ldots, P(n+2k)$.

Receiver:

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute *P*(1),...,*P*(*n*).

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure. Only n+2k values. See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Unique solution for P(x)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x)$$
 on $n+2k$ values of x . (2)

Equation ?? implies ??:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \implies$ Same polynomial! Last bit.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at x = 2.

Berlekamp-Welsh algorithm decodes correctly when k errors!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message: coefficients, p_0, \ldots, p_{n-1} .
- **2**. Send $P(1), \ldots, P(n+2k)$.