... from Polynomials.

... from Polynomials.

Secret Sharing.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

... from Polynomials.

Secret Sharing. Give out *n* points on degree k - 1 polynomail P(x)Encode secret as *y*-intercept of P(x).

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

(d+1)-points correspond to exactly one Polynomial.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

(d+1)-points correspond to exactly one Polynomial.

Lagrange Interpolation \implies there exists a polynomial that hits points.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

(d+1)-points correspond to exactly one Polynomial.

Lagrange Interpolation \implies there exists a polynomial that hits points.

Polynomial Division \implies there is only one.

... from Polynomials.

Secret Sharing.

Give out *n* points on degree k - 1 polynomail P(x)

Encode secret as *y*-intercept of P(x).

Any k can reconstruct polynomial.

(d+1)-points correspond to exactly one Polynomial.

Lagrange Interpolation \implies there exists a polynomial that hits points.

Polynomial Division \implies there is only one.

Can also reconstruct polynomial using a linear system.

Satellite

3 packet message.

3 packet message.

3 packet message. So send 6!

3 packet message. So send 6!

3 packet message. So send 6!

n packet message, channel that loses k packets.

n packet message, channel that loses *k* packets. Must send n + k packets!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any n point values

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any n point values

allow reconstruction of degree n-1 polynomial.

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any *n* point values

allow reconstruction of degree n-1 polynomial.

Alright!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any *n* point values

allow reconstruction of degree n-1 polynomial.

Alright!!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any *n* point values

allow reconstruction of degree n-1 polynomial.

Alright!!!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any n point values

allow reconstruction of degree n-1 polynomial.

Alright!!!!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any n point values

allow reconstruction of degree n-1 polynomial.

Alright!!!!!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any n point values

allow reconstruction of degree n-1 polynomial.

Alright!!!!!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any n point values

allow reconstruction of degree n-1 polynomial.

Alright!!!!!

n packet message, channel that loses *k* packets.

Must send n + k packets!

Any *n* packets

should allow reconstruction of *n* packet message.

Any *n* point values

allow reconstruction of degree n-1 polynomial.

Alright!!!!!

Use polynomials.

Problem: Want to send a message with *n* packets.

Problem: Want to send a message with *n* packets. **Channel:** Lossy channel: loses *k* packets.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses k packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size *b*.

2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send $P(1), \ldots, P(n+k)$.

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size *b*.

2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send $P(1), \ldots, P(n+k)$.

Any *n* of the n + k packets gives polynomial ...

Problem: Want to send a message with *n* packets.

Channel: Lossy channel: loses *k* packets.

Question: Can you send n + k packets and recover message?

A degree n-1 polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size *b*.

2.
$$P(x) = m_{n-1}x^{n-1} + \cdots + m_0 \pmod{p}$$
.

3. Send $P(1), \ldots, P(n+k)$.

Any *n* of the n + k packets gives polynomial ...and message!

n packet message.

n packet message.

n packet message. So send n + k!

n packet message. So send n + k!

n packet message. So send n + k!

n packet message. So send n+k!

Lose k packets.

Any n packets is enough!

n packet message. So send n + k!

Lose k packets.

Any n packets is enough!

n packet message.

n packet message. So send n + k!

Lose k packets.

Any n packets is enough!

n packet message.

Optimal.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for *x* value.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for *x* value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Size: Can choose a prime between 2^{b-1} and 2^b . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret. Coding: Each packet has size 1/n of the whole message.

Size: Can choose a prime between 2^{b-1} and 2^{b} . (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

- Can also run the Fast Fourier Transform.

In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret. Coding: Each packet has size 1/n of the whole message.

Send message of 1,4, and 4.

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. How?

Send message of 1,4, and 4. Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. How?

Lagrange Interpolation.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1,$

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4,$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points.

Send message of 1,4, and 4.

```
Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.
```

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least! Why?

Erasure Code: Example.

Send message of 1,4, and 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

How?

Lagrange Interpolation. Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

 $P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \dots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5)) \pmod{5}$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$
$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}$,

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$P(1) = a_2 + a_1 + a_0$	\equiv	1 (mod 7)
$P(2) = 4a_2 + 2a_1 + a_0$	≡	4 (mod 7)
$P(3) = 2a_2 + 3a_1 + a_0$	≡	4 (mod 7)

 $6a_1 + 3a_0 = 2 \pmod{7}, 5a_1 + 4a_0 = 0 \pmod{7}$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0.$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}, 5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0, a_0 = 2 \pmod{7}$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$

 $a_1 = 2a_0, \ a_0 = 2 \pmod{7} \ a_1 = 4 \pmod{7}$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

 $6a_1 + 3a_0 = 2 \pmod{7}, 5a_1 + 4a_0 = 0 \pmod{7}$ $a_1 = 2a_0, a_0 = 2 \pmod{7} a_1 = 4 \pmod{7} a_2 = 2 \pmod{7}$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$

$$a_1 = 2a_0, \ a_0 = 2 \pmod{7} \ a_1 = 4 \pmod{7} \ a_2 = 2 \pmod{7}$$

$$P(x) = 2x^2 + 4x + 2$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}, \ 5a_1 + 4a_0 = 0 \pmod{7}$$

$$a_1 = 2a_0, \ a_0 = 2 \pmod{7} \ a_1 = 4 \pmod{7} \ a_2 = 2 \pmod{7}$$

$$P(x) = 2x^2 + 4x + 2$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$\begin{aligned} 6a_1 + 3a_0 &= 2 \pmod{7}, \ 5a_1 + 4a_0 &= 0 \pmod{7} \\ a_1 &= 2a_0. \ a_0 &= 2 \pmod{7} \ a_1 &= 4 \pmod{7} \ a_2 &= 2 \pmod{7} \\ P(x) &= 2x^2 + 4x + 2 \\ P(1) &= 1, \end{aligned}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$\begin{aligned} 6a_1 + 3a_0 &= 2 \pmod{7}, \ 5a_1 + 4a_0 &= 0 \pmod{7} \\ a_1 &= 2a_0. \ a_0 &= 2 \pmod{7} \ a_1 &= 4 \pmod{7} \ a_2 &= 2 \pmod{7} \\ P(x) &= 2x^2 + 4x + 2 \\ P(1) &= 1, \ P(2) &= 4, \end{aligned}$$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send
Packets: $(1,1), (2,4), (3,4), (4,7), (5,2), (6,0)$

Make polynomial with P(1) = 1, P(2) = 4, P(3) = 4. Modulo 7 to accommodate at least 6 packets. Linear equations:

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}$$

$$6a_1 + 3a_0 = 2 \pmod{7}$$
, $5a_1 + 4a_0 = 0 \pmod{7}$
 $a_1 = 2a_0$. $a_0 = 2 \pmod{7}$ $a_1 = 4 \pmod{7}$ $a_2 = 2 \pmod{7}$
 $P(x) = 2x^2 + 4x + 2$
 $P(1) = 1$, $P(2) = 4$, and $P(3) = 4$
Send
Packets: $(1,1), (2,4), (3,4), (4,7), (5,2), (6,0)$

Notice that packets contain "x-values".

Send: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)

Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0) Recieve: (1,1) (3,4), (6,0)

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: (i, R(i).
```

```
Send: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: (i, R(i)).
Lagrange or linear equations.
```

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
Format: (i, R(i).
```

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$
$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

$$P(x) = 2x^2 + 4x + 2$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

$$P(x) = 2x^2 + 4x + 2$$

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (*i*, *R*(*i*).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

$$P(x) = 2x^2 + 4x + 2$$

Message?

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

 $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1,

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

 $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1, P(2) = 4,

```
Send: (1,1),(2,4),(3,4),(4,7),(5,2),(6,0)
Recieve: (1,1) (3,4), (6,0)
Reconstruct?
```

Format: (i, R(i)).

Lagrange or linear equations.

$$P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}$$

$$P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}$$

$$P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}$$

Channeling Sahai ...

 $P(x) = 2x^2 + 4x + 2$ Message? P(1) = 1, P(2) = 4, P(3) = 4.

You want to encode a secret consisting of 1,4,4.

You want to encode a secret consisting of 1,4,4. How big should modulus be?

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be?

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

Send *n* packets *b*-bit packets, with *k* errors.

You want to encode a secret consisting of 1,4,4.

How big should modulus be? Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0

through a noisy channel that loses 3 packets.

How big should modulus be? Larger than 8 and prime!

Send *n* packets *b*-bit packets, with *k* errors. Modulus should be larger than n + k and also larger than 2^b .

...give Secret Sharing.

- ...give Secret Sharing.
- ...give Erasure Codes.

- ...give Secret Sharing.
- ...give Erasure Codes.

Error Correction:

- ...give Secret Sharing.
- ...give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.)

- ...give Secret Sharing.
- ..give Erasure Codes.

Error Correction:

Noisy Channel: corrupts *k* packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

3 packet message.

3 packet message.

Corrupts 1 packets.

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

3 packet message. Send 5.

Corrupts 1 packets.

GPS device

3 packet message. Send 5.

Corrupts 1 packets.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, \ldots, P(n) = m_n$$
.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, \ldots, P(n) = m_n$$
.

Comment: could encode with packets as coefficients.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- **2.** Send $P(1), \ldots, P(n+2k)$.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- 2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- 2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n + k points *i*,

The Scheme.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- **2.** Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n + k points *i*, (2) P(x) is unique degree n - 1 polynomial

The Scheme.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- **2.** Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

P(i) = R(i) for at least n+k points i,
 P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

P(x): degree n-1 polynomial.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k *i*'s where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points i,

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k *i*'s where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points *i*, (2) P(x) is unique degree n - 1 polynomial

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k *i*'s where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n−1 polynomial that contains ≥ n+k received points.

Proof:

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

Proof:

(1) Sure.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

Proof:

(1) Sure. Only *k* corruptions.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n+k points i,
(2) P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

Proof:

(1) Sure. Only *k* corruptions.

(2) Degree n-1 polynomial Q(x) consistent with n+k points.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points *i*,

(2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

(1) Sure. Only *k* corruptions.

(2) Degree n-1 polynomial Q(x) consistent with n+k points.

Q(x) agrees with R(i), n+k times.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.
 - P(x) agrees with R(i), n+k times.

Total points contained by both: 2n + 2k.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points i,

(2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points i,

(2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only *k* corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points i,

(2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n + k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons.

Total points to choose from : n+2k. *H* Holes.

P(x): degree n-1 polynomial. Send $P(1),\ldots,P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

(1) P(i) = R(i) for at least n + k points i,

(2) P(x) is unique degree n-1 polynomial that contains > n + k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
 - Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. P Pigeons.

Total points to choose from : n+2k. *H*

Points contained by both :>n.

Holes.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
- Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons. Total points to choose from : n+2k. *H* Holes. Points contained by both $: \ge n$. $\ge P-H$ Collisions.

P(x): degree n-1 polynomial. Send $P(1),\ldots,P(n+2k)$ Receive $R(1), \ldots, R(n+2k)$ At most k i's where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n + k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
- Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. P Pigeons. Total points to choose from : n+2k. H Holes. Points contained by both $: \ge n$. $\ge P - H$ Collisions. $\implies Q(i) = P(i)$ at *n* points.

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
- Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. PPigeons.Total points to choose from: n+2k. HHoles.Points contained by both: $\geq n$. $\geq P-H$ Collisions. $\implies Q(i) = P(i)$ at n points.

 $\implies Q(x) = P(x).$

P(x): degree n-1 polynomial. Send $P(1), \dots, P(n+2k)$ Receive $R(1), \dots, R(n+2k)$ At most k is where $P(i) \neq R(i)$.

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains > n+k received points.

Proof:

- (1) Sure. Only k corruptions.
- (2) Degree n-1 polynomial Q(x) consistent with n+k points.
- Q(x) agrees with R(i), n+k times.

P(x) agrees with R(i), n+k times.

Total points contained by both: 2n+2k. *P* Pigeons. Total points to choose from : n+2k. *H* Holes. Points contained by both $: \ge n$. $\ge P-H$ Collisions. $\implies Q(i) = P(i)$ at *n* points. $\implies Q(x) = P(x)$.

Message: 3,0,6.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{0.7}$.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6,

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{0.7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{0.7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{0.7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

Message: 3,0,6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6 \mod{7}$.

Send: P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3.

(Aside: Message in plain text!)

Receive R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3.

P(i) = R(i) for n + k = 3 + 1 = 4 points.

Brute Force: For each subset of n + k points

Brute Force: For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$p_2 + p_1 + p_0 \equiv 3 \pmod{7}$$

$$4p_2 + 2p_1 + p_0 \equiv 1 \pmod{7}$$

$$2p_2 + 3p_1 + p_0 \equiv 6 \pmod{7}$$

$$2p_2 + 4p_1 + p_0 \equiv 0 \pmod{7}$$

$$1p_2 + 5p_1 + p_0 \equiv 3 \pmod{7}$$

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

 $\begin{array}{rcrcrc} p_2 + p_1 + p_0 &\equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 &\equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 &\equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 &\equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 &\equiv & 3 \pmod{7} \end{array}$

Assume point 1 is wrong

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

 $\begin{array}{rcrcrc} p_2 + p_1 + p_0 &\equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 &\equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 &\equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 &\equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 &\equiv & 3 \pmod{7} \end{array}$

Assume point 1 is wrong and solve..

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

 $\begin{array}{rcrcrc} p_2 + p_1 + p_0 &\equiv & 3 \pmod{7} \\ 4p_2 + 2p_1 + p_0 &\equiv & 1 \pmod{7} \\ 2p_2 + 3p_1 + p_0 &\equiv & 6 \pmod{7} \\ 2p_2 + 4p_1 + p_0 &\equiv & 0 \pmod{7} \\ 1p_2 + 5p_1 + p_0 &\equiv & 3 \pmod{7} \end{array}$

Assume point 1 is wrong and solve..no consistent solution!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$p_{2}+p_{1}+p_{0} \equiv 3 \pmod{7}$$

$$4p_{2}+2p_{1}+p_{0} \equiv 1 \pmod{7}$$

$$2p_{2}+3p_{1}+p_{0} \equiv 6 \pmod{7}$$

$$2p_{2}+4p_{1}+p_{0} \equiv 0 \pmod{7}$$

$$1p_{2}+5p_{1}+p_{0} \equiv 3 \pmod{7}$$

Assume point 1 is wrong and solve..no consistent solution! Assume point 2 is wrong

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$p_{2} + p_{1} + p_{0} \equiv 3 \pmod{7}$$

$$4p_{2} + 2p_{1} + p_{0} \equiv 1 \pmod{7}$$

$$2p_{2} + 3p_{1} + p_{0} \equiv 6 \pmod{7}$$

$$2p_{2} + 4p_{1} + p_{0} \equiv 0 \pmod{7}$$

$$1p_{2} + 5p_{1} + p_{0} \equiv 3 \pmod{7}$$

Assume point 1 is wrong and solve...o consistent solution! Assume point 2 is wrong and solve...

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. All equations..

$$p_{2} + p_{1} + p_{0} \equiv 3 \pmod{7}$$

$$4p_{2} + 2p_{1} + p_{0} \equiv 1 \pmod{7}$$

$$2p_{2} + 3p_{1} + p_{0} \equiv 6 \pmod{7}$$

$$2p_{2} + 4p_{1} + p_{0} \equiv 0 \pmod{7}$$

$$1p_{2} + 5p_{1} + p_{0} \equiv 3 \pmod{7}$$

Assume point 1 is wrong and solve...o consistent solution! Assume point 2 is wrong and solve...consistent solution!

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots, R(m = n + 2k)$.

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots, R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$
$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\cdot$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\cdot$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

 $P(x) = p_{n-1}x^{n-1} + \cdots p_0 \text{ and receive } R(1), \dots R(m = n+2k).$ $p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$ $p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$ \vdots $p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$ \vdots $p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$ Error!!

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\vdots$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\vdots$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where???

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\cdot$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\cdot$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where??? Could be anywhere!!!

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\cdot$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\cdot$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where??? Could be anywhere!!! ...so try everywhere.

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$

$$p_{n-1}2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$\vdots$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$\vdots$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime:
$$\binom{n+2k}{k}$$
 possibilitities.

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$
$$p_{n-1} 2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$p_{n-1}i^{n-1}+\cdots p_0 \equiv R(i) \pmod{p}$$

$$p_{n-1}(m)^{n-1} + \cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where??? Could be anywhere!!! ...so try everywhere. **Runtime:** $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in *k*!.

 $P(x) = p_{n-1}x^{n-1} + \cdots + p_0$ and receive $R(1), \dots R(m = n + 2k)$.

$$p_{n-1} + \cdots p_0 \equiv R(1) \pmod{p}$$
$$p_{n-1} 2^{n-1} + \cdots p_0 \equiv R(2) \pmod{p}$$

$$p_{n-1}i^{n-1} + \cdots p_0 \equiv R(i) \pmod{p}$$

$$p_{n-1}(m)^{n-1}+\cdots p_0 \equiv R(m) \pmod{p}$$

Error!! Where??? Could be anywhere!!! ...so try everywhere. **Runtime:** $\binom{n+2k}{k}$ possibilitities.

Something like $(n/k)^k$... Exponential in *k*!.

How do we find where the bad packets are efficiently?!?!?!

Ditty...

Where oh where

Where oh where can my bad packets be ...

Where oh where can my bad packets be ...

By Welsh-Berlekamp.

Brute Force: For each subset of n + k points

Brute Force: For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them.

Brute Force:

Brute Force:

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

 $E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$

$$E(1)(p_{n-1} + \dots + p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \dots + p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \dots + p_0) \equiv R(n+2k)E(m) \pmod{p}$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0?

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...?? We will use a polynomial!!!

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...?? We will use a polynomial!!! That we don't know.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...?? We will use a polynomial!!! That we don't know. But can find!

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2)...$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k).$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_j = i$ for some j

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_i = i$ for some j

Multiply equations by $E(\cdot)$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_j = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$E(2)(p_{n-1}2^{n-1} + \cdots p_0) \equiv R(2)E(2) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(m)^{n-1} + \cdots p_0) \equiv R(n+2k)E(m) \pmod{p}$$

Idea: Multiply equation *i* by 0 if and only if $P(i) \neq R(i)$. All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where ...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points e_1, \ldots, e_k . (In diagram above, $e_1 = 2$.)

Error locator polynomial: $E(x) = (x - e_1)(x - e_2) \dots (x - e_k)$.

E(i) = 0 if and only if $e_j = i$ for some j

Multiply equations by $E(\cdot)$. (Above E(x) = (x-2).)

All equations satisfied!!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3

Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points.

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x - 2).

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x - 2). Multiply equation *i* by (i - 2).

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x - 2).

Multiply equation *i* by (i-2). All equations satisfied!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x - 2).

Multiply equation *i* by (i-2). All equations satisfied! But don't know error locator polynomial!

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation *i* by (i - 2). All equations satisfied! But don't know error locator polynomial! Do know form:

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation *i* by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation *i* by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e).

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x - 2).

Multiply equation *i* by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e). 4 unknowns $(p_0, p_1, p_2 \text{ and } e)$,

Received R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains n + k = 3 + 1 points. Plugin points...

$$\begin{array}{rcl} (1-e)(p_2+p_1+p_0) &\equiv & (3)(1-e) \pmod{7} \\ (2-e)(4p_2+2p_1+p_0) &\equiv & (1)(2-e) \pmod{7} \\ (3-e)(2p_2+3p_1+p_0) &\equiv & (3)(3-e) \pmod{7} \\ (4-e)(2p_2+4p_1+p_0) &\equiv & (0)(4-e) \pmod{7} \\ (5-e)(4p_2+5p_1+p_0) &\equiv & (3)(5-e) \pmod{7} \end{array}$$

Error locator polynomial: (x-2).

Multiply equation *i* by (i-2). All equations satisfied!

But don't know error locator polynomial! Do know form: (x - e). 4 unknowns $(p_0, p_1, p_2 \text{ and } e)$, 5 nonlinear equations.

..turn their heads each day,

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m) \pmod{p}$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way. m = n + 2k satisfied equations,

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$. Equations:

$$Q(i)=R(i)E(i).$$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$. Equations:

 $\mathbf{Q}(i) = \mathbf{R}(i)\mathbf{E}(i).$

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$. Equations:

Q(i) = R(i)E(i).

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! Let $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0$. Equations:

Q(i) = R(i)E(i).

and linear in a_i and coefficients of E(x)!

► *E*(*x*) has degree *k*

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients.

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

Number of unknown coefficients:

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

Number of unknown coefficients: n+2k.

For all points $1, \ldots, i, n+2k = m$,

 $Q(i) = R(i)E(i) \pmod{p}$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1}+\ldots a_0 \equiv R(1)(1+b_{k-1}\cdots b_0) \pmod{p}$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$

ŝ

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $\begin{array}{rcl} a_{n+k-1}+\ldots a_0 &\equiv & R(1)(1+b_{k-1}\cdots b_0) \pmod{p} \\ a_{n+k-1}(2)^{n+k-1}+\ldots a_0 &\equiv & R(2)((2)^k+b_{k-1}(2)^{k-1}\cdots b_0) \pmod{p} \\ &\vdots \end{array}$

 $a_{n+k-1}(m)^{n+k-1}+\ldots a_0 \equiv R(m)((m)^k+b_{k-1}(m)^{k-1}\cdots b_0) \pmod{p}$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$...and n+2k unknown coefficients of Q(x) and E(x)!

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find
$$P(x) = Q(x)/E(x)$$
.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$

Received
$$R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$$

 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i).$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

 $a_3 = 1$, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

$$a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.$$

 $Q(x) = x^3 + 6x^2 + 6x + 5.$
 $E(x) = x - 2.$

 $Q(x) = x^3 + 6x^2 + 6x + 5.$

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $E(x) = x - 2.$

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $E(x) = x - 2.$

x - 2) $x^3 + 6x^2 + 6x + 5$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$x + 5$$

$$x - 2$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$x + 5$$

$$x + 5$$

$$x - 2$$

$$0$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$x + 5$$

$$x - 2$$

$$0$$

 $P(x) = x^2 + x + 1$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$------$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$-----$$

$$0$$

$$R(x) = x^{2} + x + 1$$

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$------$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$------$$

$$0$$

$$P(x) = x^{2} + x + 1$$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

What is $\frac{x-2}{x-2}$?

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$------$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$------$$

$$0$$

$$P(x) = x^{2} + x + 1$$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

What is $\frac{x-2}{x-2}$? 1

What is $\frac{x-2}{x-2}$? 1 Except at x = 2?

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 \quad x^{2} + 1 \quad x + 1$$

$$x - 2 \quad) \quad x^{3} + 6 \quad x^{2} + 6 \quad x + 5$$

$$x^{3} - 2 \quad x^{2}$$

$$------$$

$$1 \quad x^{2} + 6 \quad x + 5$$

$$1 \quad x^{2} - 2 \quad x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$-----$$

$$0$$

$$P(x) = x^{2} + x + 1$$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$
What is $\frac{x - 2}{2} = 1$

What is $\frac{x-z}{x-2}$? 1 Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n . Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send $P(1), \ldots, P(n+2k)$.

Receiver:

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute *P*(1),...,*P*(*n*).

You have error locator polynomial!

You have error locator polynomial!

Where oh where have my packets gone wrong?

You have error locator polynomial! Where oh where have my packets gone wrong? Factor?

You have error locator polynomial! Where oh where have my packets gone wrong? Factor? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values?

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency?

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure. Only n + 2k values.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure. Only n+2k values. See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure? **Existence:** there is a P(x) and E(x) that satisfy equations.

Unique solution for P(x)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Unique solution for P(x)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof:

Unique solution for P(x)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points.

$$\implies \frac{Q(x)}{E'(x)} = \frac{Q(x)}{E(x)}$$
 equal on *n* points.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \implies$ Same polynomial!

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \implies$ Same polynomial!

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x. Proof:

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$. If E(i) = 0, then Q(i) = 0.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, \dots, n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, \dots, n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, \dots, n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at x = 2.

Berlekamp-Welsh algorithm decodes correctly when k errors!

Communicate *n* packets, with *k* erasures. How many packets?

Communicate *n* packets, with *k* erasures. How many packets? n+k

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode?

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree?

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
```

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover?
```

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

How many packets?

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k
```

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

How many packets? n+2kWhy? k changes to make diff. messages overlap

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k
Why?
```

k changes to make diff. messages overlap How to encode?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x).

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

```
Reconstruct error polynomial, E(X), and P(x)!
```

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x).

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division!

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

riecover: rieconstruct r (x) with any h poin

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Reed-Solomon code.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon code.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

Reed-Solomon code.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message: coefficients, p_0, \ldots, p_{n-1} . **Problem:** Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message: coefficients, p_0, \ldots, p_{n-1} .
- **2.** Send $P(1), \ldots, P(n+2k)$.