Today.	The Scheme.	Slow solution.
Finish Welsh-Berlekamp. Countability.	Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.Reed-Solomon Code:1. Make a polynomial, $P(x)$ of degree $n-1$, that encodes message.• $P(1) = m_1, \ldots, P(n) = m_n$. • Comment: could encode with packets as coefficients.2. Send $P(1), \ldots, P(n+2k)$.After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.Properties: 	Brute Force:For each subset of $n+k$ pointsFit degree $n-1$ polynomial, $Q(x)$, to n of them.Check if consistent with $n+k$ of the total points.If yes, output $Q(x)$.For subset of $n+k$ pts where $R(i) = P(i)$, method will reconstruct $P(x)!$ For any subset of $n+k$ pts,1. there is unique degree $n-1$ polynomial $Q(x)$ that fits n of them2. and where $Q(x)$ is consistent with $n+k$ points $\implies P(x) = Q(x)$.Reconstructs $P(x)$ and only $P(x)!!$
Error Locater Polynomial. $E(1)(p_{n-1}+\cdots p_0) \equiv R(1)E(1) \pmod{p}$	Finding $Q(x)$ and $E(x)$?	Solving for $Q(x)$ and $E(x)$ and $P(x)$ For all points 1,, <i>i</i> , $n + 2k = m$,
$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$ \vdots $E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$ so satisfied, I'm on my way. m = n+2k satisfied equations, n+k unknowns. But nonlinear! We have $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$ and $E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$ Equations: Q(i) = R(i)E(i). and linear in a_i and coefficients of b_j !	• $E(x)$ has degree $k \dots$ $E(x) = x^k + b_{k-1}x^{k-1}\dots b_0.$ $\implies k \text{ (unknown) coefficients. Leading coefficient is 1.}$ • $Q(x) = P(x)E(x)$ has degree $n + k - 1 \dots$ $Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \dots + a_0$ $\implies n+k \text{ (unknown) coefficients.}$ Number of unknown coefficients: $n + 2k$.	$Q(i) = R(i)E(i) \pmod{p}$ Gives $n + 2k$ linear equations. $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$ and $n + 2k$ unknown coefficients of $Q(x)$ and $E(x)$! Solve for coefficients of $Q(x)$ and $E(x)$. Find $P(x) = Q(x)/E(x)$.

Example.	Example: finishing up.
Received $R(1) = 3$, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$ $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$	$Q(x) = x^{3} + 6x^{2} + 6x + 5.$ E(x) = x - 2. 1 x ² + 1 x + 1
$E(x) = x - b_0$ Q(i) = R(i)E(i).	$x - 2$) $x^3 + 6 x^2 + 6 x + 5 x^3 - 2 x^2$
$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$ $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$	$ \begin{array}{r} 1 x^2 + 6 x + 5 \\ 1 x^2 - 2 x \end{array} $
$6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$ $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$ $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$	x + 5 x - 2
$a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.$ $Q(x) = x^3 + 6x^2 + 6x + 5.$ E(x) = x - 2.	0 $P(x) = x^2 + x + 1$ Message is $P(1) = 3, P(2) = 0, P(3) = 6.$ What is $\frac{x-2}{x-2}$? 1 Except at $x = 2$? Hole there?
Check your undersanding.	Hmmm
You have error locator polynomial! Where oh where have my packets gone wrong? Factor? Sure. Check all values? Sure. Efficiency? Sure. Only $n+2k$ values. See where it is 0.	Is there one and only one $P(x)$ from Berlekamp- Existence: there is a $P(x)$ and $E(x)$ that satisfy

```
Error Correction: Berlekamp-Welsh
                                                             Message: m_1, \ldots, m_n.
                                                             Sender:
                                                               1. Form degree n-1 polynomial P(x) where P(i) = m_i.
                                                               2. Send P(1), \ldots, P(n+2k).
                                                             Receiver:
                                                               1. Receive R(1), ..., R(n+2k).
                                                               2. Solve n + 2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
                                                                   and E(x).
                                                               3. Compute P(x) = Q(x)/E(x).
                                                               4. Compute P(1),...,P(n).
                                                        Unique solution for P(x)
                                                             Uniqueness: any solution Q'(x) and E'(x) have
                                                                                      \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).
                                                                                                                                   (1)
                                                             Proof:
                                                             We claim
(x) from Berlekamp-Welsh procedure?
                                                                          Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.
                                                                                                                                   (2)
and E(x) that satisfy equations.
                                                             Equation 2 implies 1:
                                                             Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1
                                                                and agree on n + 2k points
                                                             E(x) and E'(x) have at most k zeros each.
                                                               Can cross divide at n points.
                                                              \implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} \text{ equal on } n \text{ points.}
Both degree \leq n \implies Same polynomial!
```

Last bit.	Yaaay!!!!	Quick Check. Error Correction.
Fact: $Q'(x)E(x) = Q(x)E'(x)$ on $n + 2k$ values of x . Proof: Construction implies that $Q(i) = R(i)E(i)$ $Q'(i) = R(i)E'(i)$ for $i \in \{1,, n + 2k\}$. If $E(i) = 0$, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$. $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero. When $E'(i)$ and $E(i)$ are not zero $\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$ Cross multiplying gives equality in fact for these points. Points to polynomials, have to deal with zeros! Example: dealing with $\frac{x-2}{x-2}$ at $x = 2$.	Berlekamp-Welsh algorithm decodes correctly when <i>k</i> errors!	Communicate <i>n</i> packets, with <i>k</i> erasures. How many packets? $n+k$ How to encode? With polynomial, $P(x)$. Of degree? $n-1$ Recover? Reconstruct $P(x)$ with any <i>n</i> points! Communicate <i>n</i> packets, with <i>k</i> errors. How many packets? $n+2k$ Why? <i>k</i> changes to make diff. messages overlap How to encode? With polynomial, $P(x)$. Of degree? $n-1$. Recover? Reconstruct error polynomial, $E(X)$, and $P(x)$! Nonlinear equations. Reconstruct $E(x)$ and $Q(x) = E(x)P(x)$. Linear Equations. Polynomial division! $P(x) = Q(x)/E(x)$! Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!
Next up: how big is infinity.	How big are the reals or the integers?	Same size?
 Countable Countably infinite. Enumeration 	Infinite! Is one bigger or smaller?	Same number? Make a function f : Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black border One to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle. Onto: For all $s \in R, \exists c \in D, s = f(c)$. Isomorphism principle: If there is $f: D \rightarrow R$ that is one to one and onto, then, $ D = R $.

Isomorphism principle.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$. **Onto:** For all $y \in R, \exists x \in D, y = f(x)$.

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle: If there is a bijection $f: D \rightarrow R$ then |D| = |R|.

A bijection is a bijection.

Notice that there is a bijection between *N* and *Z*⁺ as well. $f(n) = n + 1.0 \rightarrow 1, 1 \rightarrow 2, ...$

Bijection from A to $B \implies$ a bijection from B to A.

Inverse function! Can prove equivalence either way. Bijection to or from natural numbers implies countably infinite.

Countable.

How to count?

0, 1, 2, 3, ...

The Counting numbers. The natural numbers! *N* Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*. If the subset of *N* is finite, *S* has finite **cardinality**. If the subset of *N* is infinite, *S* is **countably infinite**.

More large sets.

E - Even natural numbers? $f: N \to E$. $f(n) \to 2n$. Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y = f(x) \neq f(y)$ Evens are countably infinite. Evens are same size as all natural numbers.

Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n + 1, f(z) = (n + 1) - 1 = n. Onto for \mathbb{N} Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|$. But.. but Where's zero? "Comes from 1."

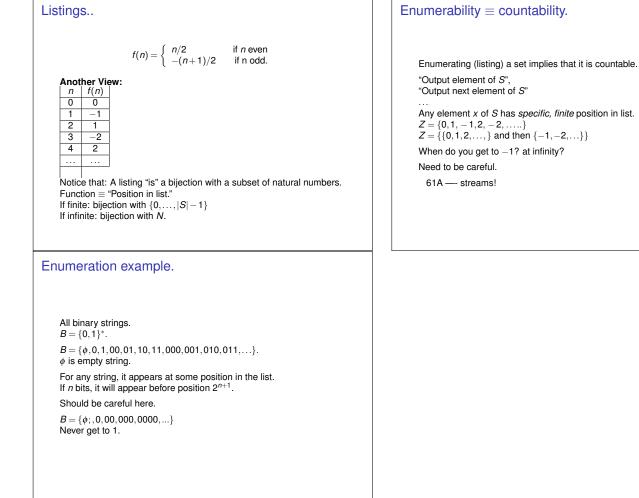
All integers?

What about Integers, *Z*? Define $f: N \rightarrow Z$.

 $f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$ if n even

```
One-to-one: For x \neq y
if x is even and y is odd,
then f(x) is nonnegative and f(y) is negative \implies f(x) \neq f(y)
if x is even and y is even,
then x/2 \neq y/2 \implies f(x) \neq f(y)
....
Onto: For any z \in Z,
if z \ge 0, f(2z) = z and 2z \in N.
if z < 0, f(2|z| - 1) = z and 2|z| + 1 \in N.
```

Integers and naturals have same size!



Countably infinite subsets.

Enumerating a set implies countable. Corollary: Any subset *T* of a countable set *S* is countable. Enumerate T as follows: Get next element, x, of S, output only if $x \in T$.

Implications: Z^+ is countable. It is infinite since the list goes on. There is a bijection with the natural numbers. So it is countably infinite.

All countably infinite sets have the same cardinality.