Today.

Finish Welsh-Berlekamp.
Countability.



The Scheme.

Problem: Communicate n packets my,...,mp
on noisy channel that corrupts < k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n—1,
that encodes message.

» P(1)=my,...,P(n)=mpy.
» Comment: could encode with packets as coefficients.

2. Send P(1),...,P(n+2k).

After noisy channel: Recieve values R(1),..., R(n+2Kk).

Properties:
(1) P(i) = R(J) for at least n+ k points i,
(2) P(x) is unique degree n— 1 polynomial
that contains > n+ k received points.



Slow solution.

Brute Force:

For each subset of n+ k points
Fit degree n— 1 polynomial, Q(x), to n of them.
Check if consistent with n+ k of the total points.
If yes, output Q(x).

» For subset of n+ k pts where R(i) = P(i),
method will reconstruct P(x)!
» For any subset of n+ k pts,

1. there is unique degree n— 1 polynomial Q(x) that fits n of

them
2. and where Q(x) is consistent with n+ k points
= P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Error Locater Polynomial.

E(1)(Pn—1+--po) R(1)E(1) (mod p)

E(#)(Pn—11""+---po) R(/E(i) (mod p)

E(m)(pn_1(n+2K)"" +---pp) = R(m)E(m) (mod p)

...S0 satisfied, 'm on my way.
m = n+ 2k satisfied equations, n+ k unknowns. But nonlinear!

We have

Q(x) = E(X)P(x) = apsk_1x" K1 4. ap.
and

E(X) = xk +bk—1xk_1 -+ bg.
Equations:

Q(i) = R()E(i).

and linear in a; and coefficients of b;!



Finding Q(x) and E(x)?

» E(x) has degree k ...

E(x) = x"+b_1xk1... by.
= k (unknown) coefficients. Leading coefficient is 1.
> Q(x)= P(x)E(x) has degree n+ k—1 ...
Q(X) = anyk 1 X" fap g ox™H 24 g
= n+ k (unknown) coefficients.

Number of unknown coefficients: n+ 2k.



Solving for Q(x) and E(x)...and P(x)

For all points 1,...,i,n+2k = m,

Q(i) = R()E(i) (mod p)
Gives n+ 2k linear equations.

anik-1+...a = R)(1+bk_1---by) (mod p)
anik-1(2)" . a = R(2)((2)f+bk-1(2) "+ bp) (mod p)
Bk (M 4 ay = A(m)((m)F by (m) o) (mod p)

..and n+ 2k unknown coefficients of Q(x) and E(x)!
Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).



Example.

Received R(1) =3,R(2)=1,R(3)=6,R(4)=0,R(5) =3
Q(x) = E(x)P(x) = azx® + axx® + a1 x + ag

E(x)=x—bo

Q(i) = R()E(i).

aztatait+ap
az+4ao+2ar+ ap
6as +2a>+3ay + ap
az+2ax+4a;+a
6as+4a>+5a;+ap

a3=1,a=6,a =6,a =>5and by =2.

Q(x) = x3 +6x% +6x +5.

E(x)=x-2.



Example: finishing up.

Q(x) = x®4+6x%+6x+5.

E(x)=x-2.
1 x"2 +1x +1
X -2 ) X3 + 6 x"2+ 6x+5
x"3 = 2 x"2

1 x72 6 x + 5

1 x72 2 x
x + 5
X - 2
0

P(x) = x?+x+1
Message is P(1) =3,P(2) =0,P(3) =6.
What is X237 1

Except at x =27 Hole there?



Error Correction: Berlekamp-Welsh

Message: my,...,mp.
Sender:

1. Form degree n— 1 polynomial P(x) where P(i) = m;.
2. Send P(1),...,P(n+2k).

Receiver:
1. Receive R(1),...,R(n+2k).

2. Solve n+ 2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
and E(x).

3. Compute P(x) = Q(x)/E(x).
4. Compute P(1),...,P(n).



Check your undersanding.

You have error locator polynomial!
Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+ 2k values.
See where itis 0.



Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?
Existence: there is a P(x) and E(x) that satisfy equations.



Unique solution for P(x)

Uniqueness: any solution Q'(x) and E’(x) have

Q(x) Qx)
E) B )

~

Proof:
We claim

Q'(x)E(x) = Q(x)E’'(x) on n+ 2k values of x.

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E’(x) are degree n+2k — 1
and agree on n+ 2k points
E(x) and E’(x) have at most k zeros each.
Can cross divide at n points.
= géi? = gg; equal on n points.

Both degree < n = Same polynomial!




Last bit.

Fact: Q' (x)E(x)= Q(x)E’(x) on n+ 2k values of x.
Proof: Construction implies that

Qi) = R()E()
Q'(i)= R()E'(i)
forie{1,...n+2k}.

If E(i)=0, then Q(i) = 0. If E'(i) =0, then Q'(i) = 0.
= Q(i)E'(i) = Q'(i)E(i) holds when E(i) or E'(i) are zero.

When E’(i) and E(/) are not zero
Q) Qi) .
B Em )

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!
Example: dealing with =2 at x = 2.



Yaaay!!!!

Berlekamp-Welsh algorithm decodes correctly when k errors!



Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+ k

How to encode? With polynomial, P(x).

Of degree? n—1

Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+ 2k
Why?
k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n—1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!



Next up: how big is infinity.

» Countable
» Countably infinite.

» Enumeration



How big are the reals or the integers?

Infinite!
Is one bigger or smaller?



Same size?

Same number?

Make a function f : Circles — Squares.

f(red circle) = red square

f(blue circle) = blue square

f(circle with black border) = square with black border
One to one. Each circle mapped to different square.
OnetoOne: Forall x,y € D, x #y = f(x) # f(y).

Onto. Each square mapped to from some circle .
Onto: Forallse R, 3ce D,s=f(c).

Isomorphism principle: If there is f: D — R that is one to one and
onto, then, |D| = |A|.



Isomorphism principle.

Given a function, f: D — R.

One to One:

Forallvx,y e D, x#y = f(x) # f(y).
or

vx,y e D, f(x)=1f(y) = x=y.

Onto: Forally € R, 3x € D,y = f(x).
f(-) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f: D — R then |D| = |R].



Countable.

How to count?
0,1,2,3,...

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.
If the subset of N is infinite, S is countably infinite.



Where’s 07?

Which is bigger?
The positive integers, Z™, or the natural numbers, N.

Natural numbers. 0,1,2.3, ....
Positive integers. 1,23, ....
Where’s 0?

More natural numbers!
Consider f(z) =z —1.

Foranytwo z1 # 2z = z1—1#2—1 = f(Z1) # f(2).
One to one!

For any natural number n, forz=n+1,f(z)=(n+1)—1=n.
Onto for N

Bijection! — |Z*|=|N]|.
But.. but Where’s zero? “Comes from 1.”



A bijection is a bijection.

Notice that there is a bijection between N and Z* as well.
f(n)=n+1.0—>1,1—=2,...

Bijection from Ato B = a bijection from B to A.
Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.



More large sets.

E - Even natural numbers?
f:N—E.
f(n) — 2n.

Onto: Ve € E, f(e/2) = e. e/2 is natural since e is even
One-to-one: Vx,y e Nyx #y = 2x £ 2y. = f(x) £ f(y)

Evens are countably infinite.
Evens are same size as all natural numbers.



All integers?

What about Integers, Z?
Define f: N — Z.

2 if n even
f(n) —{ Z/(n+1)/2 Iif n o\;jd.

One-to-one: For x £ y

if x is even and y is odd,

then f(x) is nonnegative and f(y) is negative —- f(x) # f(y)
if x is even and y is even,

then x/2#y/2 = f(x) #f(y)

Onto: Forany z € Z,
if z>0, f(2z) =zand 2z € N.
if z<0, f(2|z] —1)=zand 2|z|+1 € N.

Integers and naturals have same size!



Listings..

n/2 if n even
f(”)_{ “(n+1)/2  ifnodd.
Another View:
n | f(n)
0 0
1| —1
2 1
3| -2
4 2

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function = “Position in list”

If finite: bijection with {0,...,|S|—1}

If infinite: bijection with N.



Enumerability = countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

Any element x of S has specific, finite position in list.
zZ={0,1,-1,2, -2 .....}
Z=1{{0,1,2,...,} and then {-1,-2,...}}

When do you get to —1? at infinity?
Need to be careful.
61A —- streams!



Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x, of S,
outputonly if x € T.

Implications:

Z* is countable.

It is infinite since the list goes on.

There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.



Enumeration example.

All binary strings.
B={0,1}*.

B={¢,0,1,00,01,10,11,000,001,010,011,...}.
¢ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 27+1.

Should be careful here.

B={¢;,0,00,000,0000,...}
Never get to 1.



