Today.

Finish Welsh-Berlekamp. Countability.

The Scheme.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

- 1. Make a polynomial, P(x) of degree n-1, that encodes message.
 - ▶ $P(1) = m_1, ..., P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
- 2. Send P(1), ..., P(n+2k).

After noisy channel: Recieve values R(1), ..., R(n+2k).

Properties:

- (1) P(i) = R(i) for at least n + k points i,
- (2) P(x) is unique degree n-1 polynomial that contains $\geq n+k$ received points.

Slow solution.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n+k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Error Locater Polynomial.

$$E(1)(p_{n-1} + \cdots p_0) \equiv R(1)E(1) \pmod{p}$$

$$\vdots$$

$$E(i)(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i)E(i) \pmod{p}$$

$$\vdots$$

$$E(m)(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m)E(m) \pmod{p}$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

We have

$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$$

and

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

Equations:

$$Q(i) = R(i)E(i)$$
.

and linear in a_i and coefficients of b_i !

Finding Q(x) and E(x)?

 \triangleright E(x) has degree k ...

$$E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

ightharpoonup Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 $\implies n+k$ (unknown) coefficients.

Number of unknown coefficients: n+2k.

Solving for Q(x) and E(x)...and P(x)

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n+2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots + a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots + b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find
$$P(x) = Q(x)/E(x)$$
.

Example.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$
 $6a_3 + 2a_2 + 3a_1 + a_0 \equiv 6(3 - b_0) \pmod{7}$
 $a_3 + 2a_2 + 4a_1 + a_0 \equiv 0(4 - b_0) \pmod{7}$
 $6a_3 + 4a_2 + 5a_1 + a_0 \equiv 3(5 - b_0) \pmod{7}$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.
 $E(x) = x - 2$.

Example: finishing up.

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3$, $P(2) = 0$, $P(3) = 6$.
What is $\frac{x-2}{x-2}$? 1

Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n .

Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send P(1), ..., P(n+2k).

Receiver:

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x) and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute P(1), ..., P(n).

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure. Only n+2k values.

See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Unique solution for P(x)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x). \tag{1}$$

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x.$$
 (2)

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1 and agree on n+2k points

E(x) and E'(x) have at most k zeros each.

Can cross divide at *n* points.

 $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on *n* points.

Both degree $\leq n \implies$ Same polynomial!

Last bit.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$

$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, ..., n+2k\}$.

If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\Rightarrow Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at x=2.

Yaaay!!!!

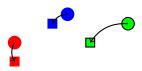
Berlekamp-Welsh algorithm decodes correctly when \boldsymbol{k} errors!

Quick Check. Error Correction.

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x). Of degree? n-1Recover? Reconstruct P(x) with any n points! Communicate *n* packets, with *k* errors. How many packets? n+2kWhv? k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover? Reconstruct error polynomial, E(X), and P(x)! Nonlinear equations. Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Next up: how big is infinity.


- Countable
- Countably infinite.
- Enumeration

How big are the reals or the integers?

Infinite!

Is one bigger or smaller?

Same size?

Same number?

Make a function f: Circles \rightarrow Squares.

f(red circle) = red square

f(blue circle) = blue square

f(circle with black border) = square with black border

One to one. Each circle mapped to different square.

One to One: For all $x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

Onto. Each square mapped to from some circle.

Onto: For all $s \in R$, $\exists c \in D, s = f(c)$.

Isomorphism principle: If there is $f: D \rightarrow R$ that is one to one and onto, then, |D| = |R|.

Isomorphism principle.

Given a function, $f: D \rightarrow R$.

One to One:

For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$.

or

$$\forall x, y \in D, f(x) = f(y) \implies x = y.$$

Onto: For all $y \in R$, $\exists x \in D, y = f(x)$.

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:

If there is a bijection $f: D \to R$ then |D| = |R|.

Countable.

How to count?

0, 1, 2, 3, ...

The Counting numbers.

The natural numbers! N

Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Where's 0?

Which is bigger?

The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} .

Natural numbers. 0, 1, 2, 3,

Positive integers. 1,2,3,....

Where's 0?

More natural numbers!

Consider f(z) = z - 1.

For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

One to one!

For any natural number n, for z = n+1, f(z) = (n+1)-1 = n. Onto for $\mathbb N$

Bijection! \Longrightarrow $|\mathbb{Z}^+| = |\mathbb{N}|$.

But.. but Where's zero? "Comes from 1."

A bijection is a bijection.

Notice that there is a bijection between N and Z^+ as well.

$$f(n) = n+1.0 \to 1, 1 \to 2, ...$$

Bijection from A to $B \implies$ a bijection from B to A.

Inverse function!

Can prove equivalence either way.

Bijection to or from natural numbers implies countably infinite.

More large sets.

E - Even natural numbers?

 $f: N \rightarrow E$.

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y$. $\equiv f(x) \neq f(y)$

Evens are countably infinite.

Evens are same size as all natural numbers.

All integers?

What about Integers, Z? Define $f: N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if n odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \ge 0$, f(2z) = z and $2z \in N$. if z < 0, f(2|z|-1) = z and $2|z|+1 \in N$.

Integers and naturals have same size!

Listings..

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if n odd.} \end{cases}$$

Another View:

n	<i>f</i> (<i>n</i>)
0	0
1	-1
2	1
3	-2
4	2

Notice that: A listing "is" a bijection with a subset of natural numbers.

Function \equiv "Position in list."

If finite: bijection with $\{0,\dots,|\boldsymbol{\mathcal{S}}|-1\}$

If infinite: bijection with N.

Enumerability \equiv countability.

Enumerating (listing) a set implies that it is countable.

"Output element of S",

"Output next element of S"

. . .

Any element *x* of *S* has *specific, finite* position in list.

$$Z = \{0, 1, -1, 2, -2, \ldots \}$$

$$\textit{\textbf{Z}} = \{\{0,1,2,\ldots,\} \text{ and then } \{-1,-2,\ldots\}\}$$

When do you get to -1? at infinity?

Need to be careful.

61A —- streams!

Countably infinite subsets.

Enumerating a set implies countable.

Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows:

Get next element, x, of S, output only if $x \in T$.

Implications:

 Z^+ is countable.

It is infinite since the list goes on.

There is a bijection with the natural numbers.

So it is countably infinite.

All countably infinite sets have the same cardinality.

Enumeration example.

All binary strings.

$$B = \{0, 1\}^*$$
.

$$B = {\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \dots}.$$

 ϕ is empty string.

For any string, it appears at some position in the list. If n bits, it will appear before position 2^{n+1} .

Should be careful here.

$$B = \{\phi; 0,00,000,0000,...\}$$

Never get to 1.