

Finish Welsh-Berlekamp.

Finish Welsh-Berlekamp. Countability.

Problem: Communicate *n* packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, \ldots, P(n) = m_n$$
.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, \ldots, P(n) = m_n$$
.

Comment: could encode with packets as coefficients.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- **2.** Send $P(1), \ldots, P(n+2k)$.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- 2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- 2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n + k points *i*,

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- **2.** Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) P(i) = R(i) for at least n + k points *i*, (2) P(x) is unique degree n - 1 polynomial

Problem: Communicate *n* packets $m_1, ..., m_n$ on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n-1, that encodes message.

•
$$P(1) = m_1, ..., P(n) = m_n$$
.

- Comment: could encode with packets as coefficients.
- **2.** Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

P(i) = R(i) for at least n+k points i,
 P(x) is unique degree n-1 polynomial that contains ≥ n+k received points.

Brute Force: For each subset of n + k points

Brute Force: For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them.

Brute Force:

Brute Force:

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n+k points

Brute Force:

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Brute Force:

For each subset of n+k points Fit degree n-1 polynomial, Q(x), to n of them. Check if consistent with n+k of the total points. If yes, output Q(x).

- For subset of n+k pts where R(i) = P(i), method will reconstruct P(x)!
- For any subset of n + k pts,
 - 1. there is unique degree n-1 polynomial Q(x) that fits n of them
 - 2. and where Q(x) is consistent with n + k points $\implies P(x) = Q(x)$.

Reconstructs P(x) and only P(x)!!

Error Locater Polynomial.

$$(p_{n-1} + \cdots p_0) \equiv R(1) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}i^{n-1} + \cdots p_0) \equiv R(i) \pmod{p}$$

$$\vdots$$

$$(p_{n-1}(n+2k)^{n-1} + \cdots p_0) \equiv R(m) \pmod{p}$$

...so satisfied, I'm on my way.

...so satisfied, I'm on my way.

m = n + 2k satisfied equations,

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns.

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! We have

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! We have

$$Q(x)=E(x)P(x)=a_{n+k-1}x^{n+k-1}+\cdots a_0.$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! We have

 $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$ and

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear! We have

 $Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$ and

$$E(x)=x^k+b_{k-1}x^{k-1}\cdots b_0.$$

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

We have

$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$$

and

$$E(x)=x^k+b_{k-1}x^{k-1}\cdots b_0.$$

Equations:

Q(i) = R(i)E(i).

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

We have

$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$$

and

$$E(x)=x^k+b_{k-1}x^{k-1}\cdots b_0.$$

Equations:

Q(i) = R(i)E(i).

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

We have

$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$$

and

$$E(x)=x^k+b_{k-1}x^{k-1}\cdots b_0.$$

Equations:

Q(i) = R(i)E(i).

...so satisfied, I'm on my way.

m = n + 2k satisfied equations, n + k unknowns. But nonlinear!

We have

$$Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$$

and

$$E(x)=x^k+b_{k-1}x^{k-1}\cdots b_0.$$

Equations:

$$Q(i) = R(i)E(i).$$

and linear in a_i and coefficients of b_i !

Finding Q(x) and E(x)?

Finding Q(x) and E(x)?

► *E*(*x*) has degree *k*

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients.

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

Number of unknown coefficients:

• E(x) has degree $k \dots$

$$E(x) = x^k + b_{k-1}x^{k-1}\cdots b_0.$$

 \implies k (unknown) coefficients. Leading coefficient is 1.

• Q(x) = P(x)E(x) has degree n+k-1 ...

$$Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0$$

 \implies *n*+*k* (unknown) coefficients.

Number of unknown coefficients: n+2k.

For all points $1, \ldots, i, n+2k = m$,

 $Q(i) = R(i)E(i) \pmod{p}$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1}+\ldots a_0 \equiv R(1)(1+b_{k-1}\cdots b_0) \pmod{p}$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$

ŝ

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $\begin{array}{rcl} a_{n+k-1}+\ldots a_0 &\equiv & R(1)(1+b_{k-1}\cdots b_0) \pmod{p} \\ a_{n+k-1}(2)^{n+k-1}+\ldots a_0 &\equiv & R(2)((2)^k+b_{k-1}(2)^{k-1}\cdots b_0) \pmod{p} \\ &\vdots \end{array}$

 $a_{n+k-1}(m)^{n+k-1}+\ldots a_0 \equiv R(m)((m)^k+b_{k-1}(m)^{k-1}\cdots b_0) \pmod{p}$

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$...and n+2k unknown coefficients of Q(x) and E(x)!

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find
$$P(x) = Q(x)/E(x)$$
.

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

For all points $1, \ldots, i, n+2k = m$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives n + 2k linear equations.

 $a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$ $a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$ \vdots $a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$

Received
$$R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$$

 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i).$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$a_3 + a_2 + a_1 + a_0 \equiv 3(1 - b_0) \pmod{7}$$

 $a_3 + 4a_2 + 2a_1 + a_0 \equiv 1(2 - b_0) \pmod{7}$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

 $a_3 = 1$, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

$$a_3 = 1$$
, $a_2 = 6$, $a_1 = 6$, $a_0 = 5$ and $b_0 = 2$.
 $Q(x) = x^3 + 6x^2 + 6x + 5$.

Received
$$R(1) = 3$$
, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$
 $Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
 $E(x) = x - b_0$
 $Q(i) = R(i)E(i)$.

$$\begin{array}{rcl} a_3 + a_2 + a_1 + a_0 &\equiv& 3(1 - b_0) \pmod{7} \\ a_3 + 4a_2 + 2a_1 + a_0 &\equiv& 1(2 - b_0) \pmod{7} \\ 6a_3 + 2a_2 + 3a_1 + a_0 &\equiv& 6(3 - b_0) \pmod{7} \\ a_3 + 2a_2 + 4a_1 + a_0 &\equiv& 0(4 - b_0) \pmod{7} \\ 6a_3 + 4a_2 + 5a_1 + a_0 &\equiv& 3(5 - b_0) \pmod{7} \end{array}$$

$$a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5 \text{ and } b_0 = 2.$$

 $Q(x) = x^3 + 6x^2 + 6x + 5.$
 $E(x) = x - 2.$

 $Q(x) = x^3 + 6x^2 + 6x + 5.$

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $E(x) = x - 2.$

$$Q(x) = x^3 + 6x^2 + 6x + 5.$$

 $E(x) = x - 2.$

x - 2) $x^3 + 6x^2 + 6x + 5$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$x + 5$$

$$x - 2$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$x + 5$$

$$x + 5$$

$$x - 2$$

$$0$$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$x + 5$$

$$x - 2$$

$$0$$

 $P(x) = x^2 + x + 1$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$------$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$-----$$

$$0$$

$$R(x) = x^{2} + x + 1$$

$$P(x) = x^2 + x + 1$$

Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$------$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$------$$

$$0$$

$$P(x) = x^{2} + x + 1$$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

What is $\frac{x-2}{x-2}$?

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 x^{2} + 1 x + 1$$

$$x - 2) x^{3} + 6 x^{2} + 6 x + 5$$

$$x^{3} - 2 x^{2}$$

$$------$$

$$1 x^{2} + 6 x + 5$$

$$1 x^{2} - 2 x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$------$$

$$0$$

$$P(x) = x^{2} + x + 1$$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$

What is $\frac{x-2}{x-2}$? 1

What is $\frac{x-2}{x-2}$? 1 Except at x = 2?

$$Q(x) = x^{3} + 6x^{2} + 6x + 5.$$

$$E(x) = x - 2.$$

$$1 \quad x^{2} + 1 \quad x + 1$$

$$x - 2 \quad) \quad x^{3} + 6 \quad x^{2} + 6 \quad x + 5$$

$$x^{3} - 2 \quad x^{2}$$

$$------$$

$$1 \quad x^{2} + 6 \quad x + 5$$

$$1 \quad x^{2} - 2 \quad x$$

$$------$$

$$x + 5$$

$$x - 2$$

$$-----$$

$$0$$

$$P(x) = x^{2} + x + 1$$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$
What is $\frac{x - 2}{2} = 1$

What is $\frac{x-z}{x-2}$? 1 Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n . Sender:

- 1. Form degree n-1 polynomial P(x) where $P(i) = m_i$.
- 2. Send $P(1), \ldots, P(n+2k)$.

Receiver:

- 1. Receive R(1), ..., R(n+2k).
- 2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)and E(x).
- 3. Compute P(x) = Q(x)/E(x).
- 4. Compute *P*(1),...,*P*(*n*).

You have error locator polynomial!

You have error locator polynomial!

Where oh where have my packets gone wrong?

You have error locator polynomial! Where oh where have my packets gone wrong? Factor?

You have error locator polynomial! Where oh where have my packets gone wrong? Factor? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values?

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency?

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure. Only n + 2k values.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure. Check all values? Sure.

Efficiency? Sure. Only n+2k values. See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure? **Existence:** there is a P(x) and E(x) that satisfy equations.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points.

$$\implies \frac{Q(x)}{E'(x)} = \frac{Q(x)}{E(x)}$$
 equal on *n* points.

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n$

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
(1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \implies$ Same polynomial!

Uniqueness: any solution Q'(x) and E'(x) have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$
 (1)

Proof: We claim

$$Q'(x)E(x) = Q(x)E'(x) \text{ on } n+2k \text{ values of } x. \tag{2}$$

Equation 2 implies 1:

Q'(x)E(x) and Q(x)E'(x) are degree n+2k-1and agree on n+2k points E(x) and E'(x) have at most k zeros each. Can cross divide at n points. $\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$ equal on n points. Both degree $\leq n \implies$ Same polynomial!

Last bit.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x. Proof:

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$. If E(i) = 0, then Q(i) = 0.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, \dots, n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, \dots, n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, \dots, n+2k\}$. If E(i) = 0, then Q(i) = 0. If E'(i) = 0, then Q'(i) = 0. $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when E(i) or E'(i) are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Fact: Q'(x)E(x) = Q(x)E'(x) on n+2k values of x.

Proof: Construction implies that

Q(i) = R(i)E(i)Q'(i) = R(i)E'(i)

for $i \in \{1, ..., n+2k\}$.

If
$$E(i) = 0$$
, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
 $\implies Q(i)E'(i) = Q'(i)E(i)$ holds when $E(i)$ or $E'(i)$ are zero.

When E'(i) and E(i) are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at x = 2.

Berlekamp-Welsh algorithm decodes correctly when k errors!

Communicate *n* packets, with *k* erasures. How many packets?

Communicate *n* packets, with *k* erasures. How many packets? n+k

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode?

Communicate *n* packets, with *k* erasures. How many packets? n+kHow to encode? With polynomial, P(x).

Communicate *n* packets, with *k* erasures.

How many packets? n+kHow to encode? With polynomial, P(x). Of degree?

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
```

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover?
```

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

How many packets?

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

```
How many packets? n+2k
```

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

```
How many packets? n+2k Why?
```

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

How many packets? n+2kWhy? k changes to make diff. messages overlap

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k
Why?
```

k changes to make diff. messages overlap How to encode?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x).

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

```
Reconstruct error polynomial, E(X), and P(x)!
```

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x).

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division!

Communicate *n* packets, with *k* erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

necover: neconstruct / (x) with any h poin

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding.

Communicate n packets, with k erasures.

```
How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n-1
Recover? Reconstruct P(x) with any n points!
```

Communicate *n* packets, with *k* errors.

```
How many packets? n+2k Why?
```

k changes to make diff. messages overlap How to encode? With polynomial, P(x). Of degree? n-1. Recover?

Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations. Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Next up: how big is infinity.

Next up: how big is infinity.

- Countable
- Countably infinite.
- Enumeration

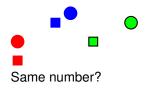
How big are the reals or the integers?

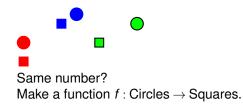
Infinite!

How big are the reals or the integers?

Infinite!

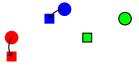
Is one bigger or smaller?



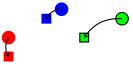




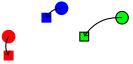
Same number? Make a function f : Circles \rightarrow Squares. f(red circle) = red square



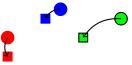
Same number? Make a function f : Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square



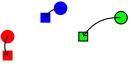
Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue squaref(circle with black border) = square with black border



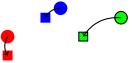
Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one.



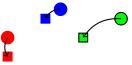
Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square.



Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$.



Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto.



Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle .

Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle . Onto: For all $s \in R, \exists c \in D, s = f(c)$.

Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle . Onto: For all $s \in R, \exists c \in D, s = f(c)$.

Same number? Make a function f: Circles \rightarrow Squares. f(red circle) = red square f(blue circle) = blue square f(circle with black border) = square with black borderOne to one. Each circle mapped to different square. One to One: For all $x, y \in D, x \neq y \implies f(x) \neq f(y)$. Onto. Each square mapped to from some circle. Onto: For all $s \in R, \exists c \in D, s = f(c)$.

Isomorphism principle: If there is $f : D \to R$ that is one to one and onto, then, |D| = |R|.

Given a function, $f: D \rightarrow R$.

Given a function, $f: D \rightarrow R$. One to One:

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$. **Onto:** For all $y \in R, \exists x \in D, y = f(x)$.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$. **Onto:** For all $y \in R, \exists x \in D, y = f(x)$.

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$. **Onto:** For all $y \in R, \exists x \in D, y = f(x)$.

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D$, y = f(x).

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:

If there is a bijection $f: D \rightarrow R$ then |D| = |R|.

How to count?

How to count?

0,

How to count?

0, 1,

How to count?

0, 1, 2,

How to count?

0, 1, 2, 3,

How to count?

0, 1, 2, 3, ...

How to count?

0, 1, 2, 3, ...

The Counting numbers.

How to count?

0, 1, 2, 3, ...

The Counting numbers. The natural numbers! *N*

How to count?

0, 1, 2, 3, ...

The Counting numbers. The natural numbers! *N*

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

How to count?

0, 1, 2, 3, ...

The Counting numbers. The natural numbers! *N*

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

How to count?

0, 1, 2, 3, ...

The Counting numbers. The natural numbers! *N*

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Which is bigger?

Which is bigger? The positive integers, $\mathbb{Z}^+,$ or the natural numbers, $\mathbb{N}.$

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} .

Natural numbers. 0,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} .

```
Natural numbers. 0,1,
```

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} .

Natural numbers. 0, 1, 2, 3,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,2,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,2,3,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,....

Positive integers. 1,2,3,....

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,2,3,.... Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,2,3,.... Where's 0?

More natural numbers!

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,2,3,.... Where's 0? More natural numbers!

Consider f(z) = z - 1.

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2$

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1$

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0,1,2,3,.... Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$.

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number n,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number n, for z = n+1,

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number *n*, for z = n+1, f(z)

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1, 2, 3, Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number n, for z = n+1, f(z) = (n+1)-1

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number n, for z = n+1, f(z) = (n+1)-1 = n.

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one!

For any natural number *n*, for z = n+1, f(z) = (n+1) - 1 = n. Onto for \mathbb{N}

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1.2.3.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n+1, f(z) = (n+1) - 1 = n. Onto for ℕ

Bijection!

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1.2.3.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n+1, f(z) = (n+1) - 1 = n. Onto for \mathbb{N}

Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|.$

Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n+1, f(z) = (n+1) - 1 = n. Onto for ℕ

Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|.$

But.. but

Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n+1, f(z) = (n+1) - 1 = n. Onto for ℕ

Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|.$

But.. but Where's zero?

Where's 0?

Which is bigger? The positive integers, \mathbb{Z}^+ , or the natural numbers, \mathbb{N} . Natural numbers. 0, 1, 2, 3, Positive integers. 1,2,3,.... Where's 0? More natural numbers! Consider f(z) = z - 1. For any two $z_1 \neq z_2 \implies z_1 - 1 \neq z_2 - 1 \implies f(z_1) \neq f(z_2)$. One to one! For any natural number n, for z = n+1, f(z) = (n+1) - 1 = n. Onto for ℕ

Bijection! $\implies |\mathbb{Z}^+| = |\mathbb{N}|.$

But.. but Where's zero? "Comes from 1."

Notice that there is a bijection between *N* and Z^+ as well.

Notice that there is a bijection between *N* and Z^+ as well. f(n) = n+1.

Notice that there is a bijection between *N* and Z^+ as well. f(n) = n + 1. $0 \rightarrow 1$,

Notice that there is a bijection between *N* and Z^+ as well. f(n) = n+1. $0 \rightarrow 1, 1 \rightarrow 2$,

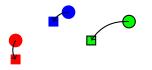
Notice that there is a bijection between *N* and Z^+ as well. f(n) = n+1. $0 \rightarrow 1, 1 \rightarrow 2, ...$

Notice that there is a bijection between *N* and Z^+ as well. f(n) = n + 1. $0 \rightarrow 1, 1 \rightarrow 2, ...$

Bijection from A to $B \implies$ a bijection from B to A.

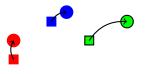
Notice that there is a bijection between *N* and Z^+ as well. f(n) = n+1. $0 \rightarrow 1, 1 \rightarrow 2, ...$

Bijection from A to $B \implies$ a bijection from B to A.



Notice that there is a bijection between *N* and Z^+ as well. f(n) = n + 1. $0 \rightarrow 1, 1 \rightarrow 2, ...$

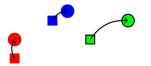
Bijection from A to $B \implies$ a bijection from B to A.



Inverse function!

Notice that there is a bijection between *N* and Z^+ as well. f(n) = n + 1. $0 \rightarrow 1, 1 \rightarrow 2, ...$

Bijection from A to $B \implies$ a bijection from B to A.

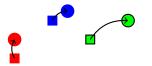


Inverse function!

Can prove equivalence either way.

Notice that there is a bijection between *N* and Z^+ as well. f(n) = n + 1. $0 \rightarrow 1, 1 \rightarrow 2, ...$

Bijection from A to $B \implies$ a bijection from B to A.



Inverse function!

Can prove equivalence either way.

Bijection to or from natural numbers implies countably infinite.

E - Even natural numbers?

E - Even natural numbers?

 $f: N \rightarrow E.$

- E Even natural numbers?
- $f: N \rightarrow E.$
- $f(n) \rightarrow 2n$.

- E Even natural numbers?
- $f: N \rightarrow E.$
- $f(n) \rightarrow 2n$.

Onto:

- E Even natural numbers?
- $f: N \rightarrow E.$
- $f(n) \rightarrow 2n$.
- Onto: $\forall e \in E$, f(e/2) = e.

E - Even natural numbers?

 $f: N \rightarrow E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even

E - Even natural numbers?

 $f: N \rightarrow E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one:

E - Even natural numbers?

 $f: N \rightarrow E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y$. E - Even natural numbers?

 $f: N \rightarrow E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y \equiv f(x) \neq f(y)$ E - Even natural numbers?

 $f: N \to E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y \equiv f(x) \neq f(y)$

Evens are countably infinite.

E - Even natural numbers?

 $f: N \to E.$

 $f(n) \rightarrow 2n$.

Onto: $\forall e \in E$, f(e/2) = e. e/2 is natural since e is even One-to-one: $\forall x, y \in N, x \neq y \implies 2x \neq 2y \equiv f(x) \neq f(y)$

Evens are countably infinite. Evens are same size as all natural numbers.

What about Integers, Z?

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd,

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even,

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2$

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

. . . .

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

. . . .

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Onto: For any $z \in Z$,

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \ge 0$, f(2z) = z and $2z \in N$.

. . . .

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \ge 0$, f(2z) = z and $2z \in N$. if z < 0, f(2|z| - 1) = z and $2|z| + 1 \in N$.

. . . .

What about Integers, *Z*? Define $f : N \rightarrow Z$.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

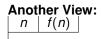
One-to-one: For $x \neq y$ if x is even and y is odd, then f(x) is nonnegative and f(y) is negative $\implies f(x) \neq f(y)$ if x is even and y is even, then $x/2 \neq y/2 \implies f(x) \neq f(y)$

Onto: For any $z \in Z$, if $z \ge 0$, f(2z) = z and $2z \in N$. if z < 0, f(2|z| - 1) = z and $2|z| + 1 \in N$.

Integers and naturals have same size!

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$



0

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

Another View: $n \mid f(n) \mid$

0

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

n	f(n)
0	0
1	-1

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

n	<i>f</i> (<i>n</i>)
0	0
1	-1
2	1

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

n	<i>f</i> (<i>n</i>)
0	0
1	-1
2	1
3	-2

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

n	<i>f</i> (<i>n</i>)
0	0
1	-1
2	1
3	-2
4	2

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

n	<i>f</i> (<i>n</i>)
0	0
1	-1
2	1
3	-2
4	2

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

Another View:		
n	f(n)	
0	0	
1	-1	
2	1	
3	-2	
4	2	

Notice that: A listing "is" a bijection with a subset of natural numbers.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

Anot	her Vie	ew:
n	f(n)	
0	0	
1	-1	
2	1	
3	-2	
4	2	

Notice that: A listing "is" a bijection with a subset of natural numbers. Function \equiv "Position in list."

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

Another View:		
n	f(n)	
0	0	
1	-1	
2	1	
3	-2	
4	2	

Notice that: A listing "is" a bijection with a subset of natural numbers. Function \equiv "Position in list." If finite: bijection with $\{0, \dots, |S| - 1\}$

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ even} \\ -(n+1)/2 & \text{if } n \text{ odd.} \end{cases}$$

Another View:		
n	f(n)	
0	0	
1	-1	
2	1	
3	-2	
4	2	

Notice that: A listing "is" a bijection with a subset of natural numbers. Function \equiv "Position in list." If finite: bijection with $\{0, ..., |S| - 1\}$ If infinite: bijection with *N*.

Enumerating (listing) a set implies that it is countable.

Enumerating (listing) a set implies that it is countable.

Enumerating (listing) a set implies that it is countable. "Output element of *S*",

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

• • •

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

. . .

Any element x of S has specific, finite position in list.

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, \dots, Z\}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, \dots, N\}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, ..., 2\}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, \dots \}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2, \dots \}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element x of S has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element x of S has specific, finite position in list. $Z = \{0, 1, -1, 2, -2, \dots\}$ $Z = \{\{0, 1, 2, \dots\}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ...,\}$ and then $\{-1, -2, ...\}$

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ...,\}$ and then $\{-1, -2, ...\}$

When do you get to -1?

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ...,\}$ and then $\{-1, -2, ...\}$

When do you get to -1? at infinity?

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ...,\}$ and then $\{-1, -2, ...\}$

When do you get to -1? at infinity?

Need to be careful.

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ...,\}$ and then $\{-1, -2, ...\}$

When do you get to -1? at infinity?

Need to be careful.

61A

Enumerating (listing) a set implies that it is countable.

"Output element of *S*", "Output next element of *S*"

Any element *x* of *S* has *specific, finite* position in list. $Z = \{0, 1, -1, 2, -2,\}$ $Z = \{\{0, 1, 2, ...,\}$ and then $\{-1, -2, ...\}$

When do you get to -1? at infinity?

Need to be careful.

61A --- streams!

Countably infinite subsets.

Enumerating a set implies countable.

Corollary: Any subset T of a countable set S is countable.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows: Get next element, x, of S,

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications:

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications:

 Z^+ is countable.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications:

 Z^+ is countable.

It is infinite since the list goes on.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications:

 Z^+ is countable.

It is infinite since the list goes on.

There is a bijection with the natural numbers.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications:

 Z^+ is countable.

It is infinite since the list goes on.

There is a bijection with the natural numbers.

So it is countably infinite.

Enumerating a set implies countable. Corollary: Any subset T of a countable set S is countable.

Enumerate *T* as follows: Get next element, *x*, of *S*, output only if $x \in T$.

Implications:

 Z^+ is countable.

It is infinite since the list goes on.

There is a bijection with the natural numbers.

So it is countably infinite.

All countably infinite sets have the same cardinality.

All binary strings.

All binary strings. $B = \{0, 1\}^*$.

All binary strings. $B = \{0, 1\}^*$. $B = \{\phi, d\}$

All binary strings. $B = \{0, 1\}^*$. $B = \{\phi, 0, \dots$

All binary strings. $B = \{0, 1\}^*$. $B = \{\phi, 0, 1, \dots$

All binary strings. $B = \{0, 1\}^*$. $B = \{\phi, 0, 1, 00, \dots$

All binary strings. $B = \{0, 1\}^*$.

 $B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \ldots\}.$

```
All binary strings.

B = \{0, 1\}^*.

B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}.

\phi is empty string.
```

```
All binary strings.

B = \{0, 1\}^*.

B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}.

\phi is empty string.
```

For any string, it appears at some position in the list.

```
All binary strings.

B = \{0, 1\}^*.

B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}.

\phi is empty string.
```

For any string, it appears at some position in the list. If *n* bits, it will appear before position 2^{n+1} .

```
All binary strings.

B = \{0, 1\}^*.

B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}.

\phi is empty string.
```

For any string, it appears at some position in the list. If *n* bits, it will appear before position 2^{n+1} .

Should be careful here.

```
All binary strings.

B = \{0, 1\}^*.

B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}.

\phi is empty string.
```

For any string, it appears at some position in the list. If *n* bits, it will appear before position 2^{n+1} .

Should be careful here.

 $B = \{\phi; 0,00,000,0000, \dots\}$

```
All binary strings.

B = \{0, 1\}^*.

B = \{\phi, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}.

\phi is empty string.
```

For any string, it appears at some position in the list. If *n* bits, it will appear before position 2^{n+1} .

Should be careful here.

```
B = \{\phi; 0,00,000,0000,...\}
Never get to 1.
```