
Today.

Finish Welsh-Berlekamp.

Countability.



Today.

Finish Welsh-Berlekamp.

Countability.



The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.
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Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.

Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.

If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!



Error Locater Polynomial.

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)
...

E(i)

(pn−1in−1 + · · ·p0) ≡ R(i)

E(i)

(mod p)
...

E(m)

(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)

E(m)

(mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !
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Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .
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Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)
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a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.
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Example: finishing up.
Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

1 xˆ2

+ 1 x + 1

-----------------
x - 2 ) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2
----------

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x
---------------

x + 5
x - 2
-----

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?
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Error Correction: Berlekamp-Welsh

Message: m1, . . . ,mn.
Sender:

1. Form degree n−1 polynomial P(x) where P(i) = mi .

2. Send P(1), . . . ,P(n+2k).

Receiver:

1. Receive R(1), . . . ,R(n+2k).

2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
and E(x).

3. Compute P(x) = Q(x)/E(x).

4. Compute P(1), . . . ,P(n).



Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.
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Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!
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Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.
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Yaaay!!!!

Berlekamp-Welsh algorithm decodes correctly when k errors!



Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X ), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!
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How big are the reals or the integers?

Infinite!

Is one bigger or smaller?
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Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.
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Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.
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Where’s 0?

Which is bigger?

The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3, . . . .

Positive integers. 1,2,3, . . . .

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”
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A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.
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More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.
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All integers?

What about Integers, Z?

Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!
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Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
. . . . . .

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.
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Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2, . . . ..}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!
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Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.
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Enumeration example.

All binary strings.

B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.
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