
Today.

Finish Welsh-Berlekamp.

Countability.

Today.

Finish Welsh-Berlekamp.

Countability.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.

I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,

(2) P(x) is unique degree n−1 polynomial
that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

The Scheme.

Problem: Communicate n packets m1, . . . ,mn
on noisy channel that corrupts ≤ k packets.

Reed-Solomon Code:

1. Make a polynomial, P(x) of degree n−1,
that encodes message.

I P(1) = m1, . . . ,P(n) = mn.
I Comment: could encode with packets as coefficients.

2. Send P(1), . . . ,P(n+2k).

After noisy channel: Recieve values R(1), . . . ,R(n+2k).

Properties:
(1) P(i) = R(i) for at least n+k points i ,
(2) P(x) is unique degree n−1 polynomial

that contains ≥ n+k received points.

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.

Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.

If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points

=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Slow solution.

Brute Force:
For each subset of n+k points

Fit degree n−1 polynomial, Q(x), to n of them.
Check if consistent with n+k of the total points.
If yes, output Q(x).

I For subset of n+k pts where R(i) = P(i),
method will reconstruct P(x)!

I For any subset of n+k pts,

1. there is unique degree n−1 polynomial Q(x) that fits n of
them

2. and where Q(x) is consistent with n+k points
=⇒ P(x) = Q(x).

Reconstructs P(x) and only P(x)!!

Error Locater Polynomial.

E(1)

(pn−1 + · · ·p0) ≡ R(1)

E(1)

(mod p)
...

E(i)

(pn−1in−1 + · · ·p0) ≡ R(i)

E(i)

(mod p)
...

E(m)

(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)

E(m)

(mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations,

n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns.

But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have

Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.
and

E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and

E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Error Locater Polynomial.
E(1)(pn−1 + · · ·p0) ≡ R(1)E(1) (mod p)

...
E(i)(pn−1in−1 + · · ·p0) ≡ R(i)E(i) (mod p)

...
E(m)(pn−1(n+2k)n−1 + · · ·p0) ≡ R(m)E(m) (mod p)

...so satisfied, I’m on my way.

m = n+2k satisfied equations, n+k unknowns. But nonlinear!

We have
Q(x) = E(x)P(x) = an+k−1xn+k−1 + · · ·a0.

and
E(x) = xk +bk−1xk−1 · · ·b0.

Equations:
Q(i) = R(i)E(i).

and linear in ai and coefficients of bj !

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k

...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients.

Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1

...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients:

n+2k .

Finding Q(x) and E(x)?

I E(x) has degree k ...

E(x) = xk +bk−1xk−1 · · ·b0.

=⇒ k (unknown) coefficients. Leading coefficient is 1.

I Q(x) = P(x)E(x) has degree n+k −1 ...

Q(x) = an+k−1xn+k−1 +an+k−2xn+k−2 + · · ·a0

=⇒ n+k (unknown) coefficients.

Number of unknown coefficients: n+2k .

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.

an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...

and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Solving for Q(x) and E(x)...and P(x)

For all points 1, . . . , i ,n+2k = m,

Q(i) = R(i)E(i) (mod p)

Gives n+2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1+bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k +bk−1(2)k−1 · · ·b0) (mod p)
...

an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k +bk−1(m)k−1 · · ·b0) (mod p)

..and n+2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)

a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)
6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)

a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)
6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example.
Received R(1) = 3,R(2) = 1,R(3) = 6,R(4) = 0,R(5) = 3

Q(x) = E(x)P(x) = a3x3 +a2x2 +a1x +a0

E(x) = x−b0

Q(i) = R(i)E(i).

a3 +a2 +a1 +a0 ≡ 3(1−b0) (mod 7)
a3 +4a2 +2a1 +a0 ≡ 1(2−b0) (mod 7)

6a3 +2a2 +3a1 +a0 ≡ 6(3−b0) (mod 7)
a3 +2a2 +4a1 +a0 ≡ 0(4−b0) (mod 7)

6a3 +4a2 +5a1 +a0 ≡ 3(5−b0) (mod 7)

a3 = 1, a2 = 6, a1 = 6, a0 = 5 and b0 = 2.

Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.

E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2

+ 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5

1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x

+ 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x

+ 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5

xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5

x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1

Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2?

1
Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2?

Hole there?

Example: finishing up.
Q(x) = x3 +6x2 +6x +5.
E(x) = x−2.

1 xˆ2 + 1 x + 1

x - 2) xˆ3 + 6 xˆ2 + 6 x + 5
xˆ3 - 2 xˆ2

1 xˆ2 + 6 x + 5
1 xˆ2 - 2 x

x + 5
x - 2

0

P(x) = x2 +x +1
Message is P(1) = 3,P(2) = 0,P(3) = 6.

What is x−2
x−2? 1

Except at x = 2? Hole there?

Error Correction: Berlekamp-Welsh

Message: m1, . . . ,mn.
Sender:

1. Form degree n−1 polynomial P(x) where P(i) = mi .

2. Send P(1), . . . ,P(n+2k).

Receiver:

1. Receive R(1), . . . ,R(n+2k).

2. Solve n+2k equations, Q(i) = E(i)R(i) to find Q(x) = E(x)P(x)
and E(x).

3. Compute P(x) = Q(x)/E(x).

4. Compute P(1), . . . ,P(n).

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor?

Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.

Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values?

Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency?

Sure. Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure.

Only n+2k values.
See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.

See where it is 0.

Check your undersanding.

You have error locator polynomial!

Where oh where have my packets gone wrong?

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only n+2k values.
See where it is 0.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Hmmm...

Is there one and only one P(x) from Berlekamp-Welsh procedure?

Existence: there is a P(x) and E(x) that satisfy equations.

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)

Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:

We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1

and agree on n+2k points
E(x) and E ′(x) have at most k zeros each.

Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.

Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.

=⇒ Q′(x)
E ′(x) =

Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n

=⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Unique solution for P(x)

Uniqueness: any solution Q′(x) and E ′(x) have

Q′(x)
E ′(x)

=
Q(x)
E(x)

= P(x). (1)
Proof:
We claim

Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x . (2)

Equation 2 implies 1:

Q′(x)E(x) and Q(x)E ′(x) are degree n+2k −1
and agree on n+2k points

E(x) and E ′(x) have at most k zeros each.
Can cross divide at n points.
=⇒ Q′(x)

E ′(x) =
Q(x)
E(x) equal on n points.

Both degree ≤ n =⇒ Same polynomial!

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof:

Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.

If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.
=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0.

If E ′(i) = 0, then Q′(i) = 0.
=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Last bit.
Fact: Q′(x)E(x) = Q(x)E ′(x) on n+2k values of x .

Proof: Construction implies that

Q(i) = R(i)E(i)

Q′(i) = R(i)E ′(i)

for i ∈ {1, . . .n+2k}.
If E(i) = 0, then Q(i) = 0. If E ′(i) = 0, then Q′(i) = 0.

=⇒ Q(i)E ′(i) = Q′(i)E(i) holds when E(i) or E ′(i) are zero.

When E ′(i) and E(i) are not zero

Q′(i)
E ′(i)

=
Q(i)
E(i)

= R(i).

Cross multiplying gives equality in fact for these points.

Points to polynomials, have to deal with zeros!

Example: dealing with x−2
x−2 at x = 2.

Yaaay!!!!

Berlekamp-Welsh algorithm decodes correctly when k errors!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets?

n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k

How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode?

With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).

Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree?

n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1

Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover?

Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets?

n+2k
Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k

Why?
k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap

How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode?

With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x).

Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree?

n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.

Recover?
Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?

Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?

Reconstruct error polynomial, E(X), and P(x)!
Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.

Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x).

Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.

Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division!

P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes.

Welsh-Berlekamp Decoding. Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding.

Perfection!

Quick Check. Error Correction.

Communicate n packets, with k erasures.

How many packets? n+k
How to encode? With polynomial, P(x).
Of degree? n−1
Recover? Reconstruct P(x) with any n points!

Communicate n packets, with k errors.

How many packets? n+2k
Why?

k changes to make diff. messages overlap
How to encode? With polynomial, P(x). Of degree? n−1.
Recover?
Reconstruct error polynomial, E(X), and P(x)!

Nonlinear equations.
Reconstruct E(x) and Q(x) = E(x)P(x). Linear Equations.
Polynomial division! P(x) = Q(x)/E(x)!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!

Next up: how big is infinity.

I Countable

I Countably infinite.

I Enumeration

Next up: how big is infinity.

I Countable

I Countably infinite.

I Enumeration

How big are the reals or the integers?

Infinite!

Is one bigger or smaller?

How big are the reals or the integers?

Infinite!

Is one bigger or smaller?

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?

Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.

f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square

f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square

f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border

One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one.

Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.

One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).

Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto.

Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .

Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Same size?

Same number?
Make a function f : Circles→ Squares.
f (red circle) = red square
f (blue circle) = blue square
f (circle with black border) = square with black border
One to one. Each circle mapped to different square.
One to One: For all x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
Onto. Each square mapped to from some circle .
Onto: For all s ∈ R, ∃c ∈ D,s = f (c).

Isomorphism principle: If there is f : D→ R that is one to one and
onto, then, |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.

One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:

For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).

or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or

∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:

If there is a bijection f : D→ R then |D|= |R|.

Isomorphism principle.

Given a function, f : D→ R.
One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0,

1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1,

2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2,

3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3,

. . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.

The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Countable.

How to count?

0, 1, 2, 3, . . .

The Counting numbers.
The natural numbers! N

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Where’s 0?

Which is bigger?

The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,

1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,

2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,

3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

. . . .

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,

2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,

3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

. . . .

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2

=⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1

=⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).

One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n,

for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 ,

f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z)

= (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1

= n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.

Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection!

=⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.

But.. but Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but

Where’s zero? “Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero?

“Comes from 1.”

Where’s 0?

Which is bigger?
The positive integers, Z+, or the natural numbers, N.

Natural numbers. 0,1,2,3,

Positive integers. 1,2,3,

Where’s 0?

More natural numbers!

Consider f (z) = z−1.

For any two z1 6= z2 =⇒ z1−1 6= z2−1 =⇒ f (z1) 6= f (z2).
One to one!

For any natural number n, for z = n+1 , f (z) = (n+1)−1 = n.
Onto for N

Bijection! =⇒ |Z+|= |N|.
But.. but Where’s zero? “Comes from 1.”

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.

f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1.

0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,

1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2,

. . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.

Bijection to or from natural numbers implies countably infinite.

A bijection is a bijection.

Notice that there is a bijection between N and Z+ as well.
f (n) = n+1. 0→ 1,1→ 2, . . .

Bijection from A to B =⇒ a bijection from B to A.

Inverse function!

Can prove equivalence either way.
Bijection to or from natural numbers implies countably infinite.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto:

∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e.

e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even

One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one:

∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y .

≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.

Evens are same size as all natural numbers.

More large sets.

E - Even natural numbers?

f : N→ E .

f (n)→ 2n.

Onto: ∀e ∈ E , f (e/2) = e. e/2 is natural since e is even
One-to-one: ∀x ,y ∈ N,x 6= y =⇒ 2x 6= 2y . ≡ f (x) 6= f (y)

Evens are countably infinite.
Evens are same size as all natural numbers.

All integers?

What about Integers, Z?

Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y

if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,

then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative

=⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)

if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,

then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2

=⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)

. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,

if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.

if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

All integers?

What about Integers, Z?
Define f : N→ Z .

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

One-to-one: For x 6= y
if x is even and y is odd,
then f (x) is nonnegative and f (y) is negative =⇒ f (x) 6= f (y)
if x is even and y is even,
then x/2 6= y/2 =⇒ f (x) 6= f (y)
. . . .

Onto: For any z ∈ Z ,
if z ≥ 0, f (2z) = z and 2z ∈ N.
if z < 0, f (2|z|−1) = z and 2|z|+1 ∈ N.

Integers and naturals have same size!

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)

0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0

1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1

2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1

3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2

4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2

.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.

Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”

If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}

If infinite: bijection with N.

Listings..

f (n) =
{

n/2 if n even
−(n+1)/2 if n odd.

Another View:
n f (n)
0 0
1 −1
2 1
3 −2
4 2
.

Notice that: A listing “is” a bijection with a subset of natural numbers.
Function ≡ “Position in list.”
If finite: bijection with {0, . . . , |S|−1}
If infinite: bijection with N.

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,

“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”

. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .

Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.

Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,

1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1,

−1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,

2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2,

−2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,

.}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}

Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,}

and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}

When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1?

at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A

—- streams!

Enumerability ≡ countability.

Enumerating (listing) a set implies that it is countable.

“Output element of S”,
“Output next element of S”
. . .
Any element x of S has specific, finite position in list.
Z = {0,1, −1,2, −2,}
Z = {{0,1,2, . . . ,} and then {−1,−2, . . .}}
When do you get to −1? at infinity?

Need to be careful.

61A —- streams!

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:

Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,

output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:

Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.

It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.

There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.

So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Countably infinite subsets.

Enumerating a set implies countable.
Corollary: Any subset T of a countable set S is countable.

Enumerate T as follows:
Get next element, x , of S,
output only if x ∈ T .

Implications:
Z+ is countable.
It is infinite since the list goes on.
There is a bijection with the natural numbers.
So it is countably infinite.

All countably infinite sets have the same cardinality.

Enumeration example.

All binary strings.

B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.

B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,

0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,

1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,

00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,

01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,

000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.

φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.

If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}

Never get to 1.

Enumeration example.

All binary strings.
B = {0,1}∗.
B = {φ ,0,1,00,01,10,11,000,001,010,011, . . .}.
φ is empty string.

For any string, it appears at some position in the list.
If n bits, it will appear before position 2n+1.

Should be careful here.

B = {φ ; ,0,00,000,0000, ...}
Never get to 1.

