Counting.
Counting.
Undecidability.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is countable if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

$0, 1, -1, 2, -2, ...$ is countable.

$\phi, \phi_0, \phi_00, \phi_01, \phi_10, \phi_11, ...$ Binary strings are countable.

Be careful: $0, 00, 000, 0000, ...$ never gets to 1!

Computer Science: Stream interleaving.

The union of two countable sets is countable!
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

$0, 1, -1, 2, -2, \ldots$
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

$0, 1, -1, 2, -2, \ldots$ \mathbb{Z} is countable.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

$0, 1, -1, 2, -2, \ldots$ Z is countable.

$\phi, 0, 00, 01, 10, 11, \ldots$
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

0, 1, −1, 2, −2, … \mathbb{Z} is countable.

$\phi, 0, 00, 01, 10, 11, \ldots$ Binary strings are countable.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

$0, 1, -1, 2, -2, \ldots$
$\phi, 0, 00, 01, 10, 11, \ldots$
\mathbb{Z} is countable.

Binary strings are countable.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

$0, 1, -1, 2, -2, \ldots$ \mathbb{Z} is countable.

$\phi, 0, 00, 01, 10, 11, \ldots$ Binary strings are countable.

Be careful: $0, 00, 000, 0000, \ldots$
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

0, 1, −1, 2, −2, … \mathbb{Z} is countable.

$\phi, 0, 00, 01, 10, 11, …$ Binary strings are countable.

Be careful: 0, 00, 000, 0000, … never gets to 1!
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

- $0, 1, -1, 2, -2, \ldots$ \mathbb{Z} is countable.
- $\phi, 0, 00, 01, 10, 11, \ldots$ Binary strings are countable.

Be careful: $0, 00, 000, 0000, \ldots$ never gets to 1!

Computer Science: Stream interleaving.
Countability

Cantor Size: A and B have the same size if there is a bijection between A and B.

A set is **countable** if there is a bijection from A to a subset of the natural numbers.

A set is countably infinite if it is countable and not finite.

A set is countable if one can enumerate it; output elements in a list where every element appears in the list in a specific finite position.

- $0, 1, -1, 2, -2, \ldots$ \(\mathbb{Z} \) is countable.
- $\phi, 0, 00, 01, 10, 11, \ldots$ Binary strings are countable.

Be careful: $0, 00, 000, 0000, \ldots$ never gets to 1!

Computer Science: Stream interleaving.

The union of two countable sets is countable!
More fractions?

Are rationals countable.
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0, ..., 1/2, ..
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0, ..., 1/2, ...
Where is 1/2 in list?
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0, ..., 1/2, ...
Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0, ..., 1/2, ..
Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...
A thing about fractions:
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0,..., 1/2,..

Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...

A thing about fractions:
 any two fractions has another fraction between it.
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0, ..., 1/2, ...
Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...
A thing about fractions:
 any two fractions has another fraction between it.
Can’t even get to “next” fraction!
More fractions?

Are rationals countable.
Enumerate the rational numbers in order...
0, ..., 1/2, ..
Where is 1/2 in list?
After 1/3, which is after 1/4, which is after 1/5...
A thing about fractions:
 any two fractions has another fraction between it.
Can’t even get to “next” fraction!
Can’t list in “order”.

Pairs of natural numbers.

Consider pairs of natural numbers: \(N \times N \)
Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2), (100, 30)$, etc.
Consider pairs of natural numbers: $N \times N$
E.g.: (1,2), (100,30), etc.
For finite sets S_1 and S_2,

Pairs of natural numbers.
Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2), (100, 30)$, etc.

For finite sets S_1 and S_2,
then $S_1 \times S_2$
Pairs of natural numbers.

Consider pairs of natural numbers: \(N \times N \)
E.g.: \((1, 2), (100, 30), \) etc.

For finite sets \(S_1 \) and \(S_2 \),
then \(S_1 \times S_2 \)
has size \(|S_1| \times |S_2|\).
Consider pairs of natural numbers: \(N \times N \)
E.g.: \((1, 2), (100, 30), \) etc.

For finite sets \(S_1 \) and \(S_2 \),
then \(S_1 \times S_2 \)
has size \(|S_1| \times |S_2| \).
Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2), (100, 30)$, etc.

For finite sets S_1 and S_2,
then $S_1 \times S_2$
has size $|S_1| \times |S_2|$.

So, $N \times N$ is countably infinite
Pairs of natural numbers.

Consider pairs of natural numbers: $N \times N$

E.g.: $(1, 2)$, $(100, 30)$, etc.

For finite sets S_1 and S_2,

then $S_1 \times S_2$

has size $|S_1| \times |S_2|$.

So, $N \times N$ is countably infinite \textit{squared}
Consider pairs of natural numbers: $N \times N$
E.g.: $(1, 2), (100, 30), \text{ etc.}$

For finite sets S_1 and S_2,
then $S_1 \times S_2$
has size $|S_1| \times |S_2|$.

So, $N \times N$ is countably infinite squared ???
Pairs of natural numbers.

Enumerate in list:

$(0,0)$, $(1,0)$, $(0,1)$, $(2,0)$, $(1,1)$, $(0,2)$, \ldots

The pair (a, b) is within the first $(a+b)^2$ elements of list!

(i.e., "square containing triangle ".)
Pairs of natural numbers.

Enumerate in list:
(0, 0),
(1, 0),
(0, 1),
(2, 0),
(1, 1),
(0, 2),
......

The pair (a, b), is within the first \((a + b)(a + b)\) elements of list (i.e., “square containing triangle ”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0),
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1),
Pairs of natural numbers.

Enumerate in list:

\((0, 0), (1, 0), (0, 1), (2, 0),\)
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1),
Pairs of natural numbers.

Enumerate in list:

\[(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), \ldots \]

The pair \((a, b)\), is within the first \((a + b)(a + b)\) elements of list!

(i.e., “square containing triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

$(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots$
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ……

The pair \((a, b)\), is within the first \((a+b)(a+b)\) elements of list!

(i.e., “square containing triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

$(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), \ldots$
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),
Pairs of natural numbers.

Enumerate in list:

\[(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), \ldots \]

The pair \((a, b)\), is within the first \((a + b)(a + b)\) elements of list!

(i.e., "square containing triangle").

Countably infinite.

Same size as the natural numbers!
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ……
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), ……
Pairs of natural numbers.

Enumerate in list:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2),

The pair \((a, b)\), is within the first \((a + b)^2\) elements of list!

(i.e., “square containing triangle”).

Countably infinite.

Same size as the natural numbers!!
Pairs of natural numbers.

Enumerate in list:

$(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots$
Pairs of natural numbers.

Enumerate in list:
$(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots$.

The pair (a, b), is within the first $(a + b)(a + b)$ elements of list!
Pairs of natural numbers.

Enumerate in list:

\[(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), \ldots \]

The pair \((a, b)\), is within the first \((a + b)(a + b)\) elements of list!
(i.e., “square containing triangle”).
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), …

The pair \((a, b)\), is within the first \((a + b)(a + b)\) elements of list!
(i.e., “square containing triangle ”).

Countably infinite.
Pairs of natural numbers.

Enumerate in list:
(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), …

The pair \((a, b)\), is within the first \((a + b)(a + b)\) elements of list! (i.e., “square containing triangle ”).

Countably infinite.

Same size as the natural numbers!!
Rationals?

Positive rational number.
Rationals?

Positive rational number.
Lowest terms: a/b
Rationals?

Positive rational number.
Lowest terms: \(\frac{a}{b} \)
\(a, b \in N \)
Rationals?

Positive rational number. Lowest terms: a/b

$a, b \in N$

with $gcd(a, b) = 1$.

Infinite subset of $\mathbb{N} \times \mathbb{N}$. Countably infinite!

All rational numbers? Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list. First negative, then nonegative. No!

Repeatedly and alternatively take one from each list. Interleave Streams in 61A

The rationals are countably infinite.
Rationals?

Positive rational number.
Lowest terms: \(a/b \)

\[a, b \in N \]

with \(\gcd(a, b) = 1 \).

Infinite subset of \(N \times N \).
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[a, b \in \mathbb{N} \]
with \(\text{gcd}(a, b) = 1 \).

Infinite subset of \(\mathbb{N} \times \mathbb{N} \).

Countably infinite!
Rationals?

Positive rational number.
Lowest terms: \(a/b \)

\[a, b \in N \]

with \(gcd(a, b) = 1 \).

Infinite subset of \(N \times N \).

Countably infinite!

All rational numbers?
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[a, b \in \mathbb{N} \]
with \(\gcd(a, b) = 1 \).

Infinite subset of \(\mathbb{N} \times \mathbb{N} \).

Countably infinite!

All rational numbers?

Negative rationals are countable.
Rationals?

Positive rational number.
Lowest terms: \(a/b\)
\[
a, b \in N
\]
with \(gcd(a, b) = 1\).

Infinite subset of \(N \times N\).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)
Rationals?

Positive rational number.
Lowest terms: \(a/b \)

\[a, b \in N \]

with \(\gcd(a, b) = 1. \)

Infinite subset of \(N \times N. \)

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.
Rationals?

Positive rational number.
Lowest terms: a/b

\[a, b \in N \]

with $gcd(a, b) = 1$.

Infinite subset of $N \times N$.

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative
Rationals?

Positive rational number.
Lowest terms: \(\frac{a}{b} \)
\[
\begin{align*}
a, b & \in \mathbb{N} \\
gcd(a, b) & = 1
\end{align*}
\]

Infinite subset of \(\mathbb{N} \times \mathbb{N} \).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ???
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[
\begin{align*}
 a, b &\in N \\
 &\text{with } \gcd(a, b) = 1.
\end{align*}
\]

Infinite subset of \(N \times N \).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[
\begin{align*}
 a, b & \in N \\
 \text{with } \gcd(a, b) &= 1.
\end{align*}
\]

Infinite subset of \(N \times N \).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[a, b \in \mathbb{N} \]
with \(\gcd(a, b) = 1 \).

Infinite subset of \(\mathbb{N} \times \mathbb{N} \).
Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.
First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.
Interleave Streams in 61A
Rationals?

Positive rational number.
Lowest terms: \(a/b \)
\[
\begin{align*}
a, b \in N \\
\text{with } gcd(a, b) = 1.
\end{align*}
\]

Infinite subset of \(N \times N \).

Countably infinite!

All rational numbers?

Negative rationals are countable. (Same size as positive rationals.)

Put all rational numbers in a list.

First negative, then nonegative ??? No!

Repeatedly and alternatively take one from each list.

Interleave Streams in 61A

The rationals are countably infinite.
Real numbers are same size as integers?
The reals.

Are the set of reals countable?
The reals.

Are the set of reals countable?
Lets consider the reals [0, 1].
Are the set of reals countable?
Lets consider the reals $[0, 1]$.
Each real has a decimal representation.
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$0.500000000...$
Are the set of reals countable?
Lets consider the reals $[0, 1]$.
Each real has a decimal representation.
$.500000000...$ (1/2)
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$.500000000... \ (1/2)$

$.785398162...$
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

$.500000000...$ (1/2)

$.785398162...$ $\pi/4$
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $.500000000\ldots$ (1/2)
- $.785398162\ldots$ $\pi/4$
- $.367879441\ldots$
Are the set of reals countable?

Lets consider the reals $[0, 1]$.

Each real has a decimal representation.

.500000000... $(1/2)$

.785398162... $\pi/4$

.367879441... $1/e$
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $0.500000000...$ $(1/2)$
- $0.785398162...$ $\pi/4$
- $0.367879441...$ $1/e$
- $0.632120558...$
Are the set of reals countable?

Lets consider the reals $[0, 1]$.

Each real has a decimal representation.

$.500000000...$ (1/2)

$.785398162...$ $\pi/4$

$.367879441...$ $1/e$

$.632120558...$ $1 - 1/e$
Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $0.500000000...$ (1/2)
- $0.785398162...$ $\pi/4$
- $0.367879441...$ $1/e$
- $0.632120558...$ $1 - 1/e$
- $0.345212312...$
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $0.500000000...$ (1/2)
- $0.785398162...$ $\pi/4$
- $0.367879441...$ $1/e$
- $0.632120558...$ $1 - 1/e$
- $0.345212312...$ Some real number
The reals.

Are the set of reals countable?

Let's consider the reals $[0, 1]$.

Each real has a decimal representation.

- $.500000000...$ (1/2)
- $.785398162...$ $\pi/4$
- $.367879441...$ $1/e$
- $.632120558...$ $1 - 1/e$
- $.345212312...$ Some real number
Diagonalization.

If countable, there a listing, \(L \) contains all reals.
Diagonalization.

If countable, there a listing, L contains all reals. For example
Diagonalization.

If countable, there a listing, L contains all reals. For example 0: .500000000...
Diagonalization.

If countable, there a listing, L contains all reals. For example:

0: .500000000...
1: .785398162...

... Construct “diagonal” number:

... 7 7 6 7 7 ...

Diagonal Number:

Digit i is 7 if number i’s ith digit is not 7 and 6 otherwise.

6 is apparently isn’t afraid!

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset $[0, 1]$ is not countable!!
Diagonalization.

If countable, there a listing, L contains all reals. For example
0: .500000000...
1: .785398162...
2: .367879441...

Construct “diagonal” number:
.7767...

Diagonal Number:
Digit i is 7 if number i’s ith digit is not 7 and 6 otherwise.

6 is apparently isn’t afraid!

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.
Contradiction!

Subset $[0, 1]$ is not countable!!
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...

Construct "diagonal" number:

.7
7
6
7
7...

Diagonal Number:

Digit i is 7 if number i's ith digit is not 7 and 6 otherwise.

6 is apparently isn't afraid!

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset $[0, 1]$ is not countable!!
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

...

Construct "diagonal" number:

.77677...

Diagonal Number:

Digit i is 7 if number i's ith digit is not 7 and 6 otherwise.

6 is apparently isn't afraid!

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.

Contradiction!

Subset $[0, 1]$ is not countable!!
Diagonalization.

If countable, there is a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number:
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: \textbf{.5}000000000...
1: \textbf{.7}85398162...
2: \textbf{.3}67879441...
3: \textbf{.6}32120558...
4: \textbf{.3}45212312...

Construct “diagonal” number: .7
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .5000000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct “diagonal” number: .77
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000... \)
1: \(.785398162... \)
2: \(.367879441... \)
3: \(.632120558... \)
4: \(.345212312... \)

Construct “diagonal” number: \(.776 \)
If countable, there a listing, \(L \) contains all reals. For example

0: \(.5000000000\ldots\)
1: \(.785398162\ldots\)
2: \(.367879441\ldots\)
3: \(.632120558\ldots\)
4: \(.345212312\ldots\)

Construct “diagonal” number: \(.7767\)
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000...\)
1: \(.785398162...\)
2: \(.367879441...\)
3: \(.632120558...\)
4: \(.345212312...\)

\[
\begin{array}{cccc}
0 & 5 & 0 & 0 \\
1 & 7 & 8 & 5 \\
2 & 3 & 6 & 7 \\
3 & 6 & 3 & 2 \\
4 & 3 & 4 & 5 \\
\end{array}
\]

Construct “diagonal” number: \(.77677\)
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...
...

Construct “diagonal” number: .77677…
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: .500000000...
1: .785398162...
2: .367879441...
3: .632120558...
4: .345212312...

Construct "diagonal" number: .77677…

Diagonal Number:
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000 \ldots \)
1: \(.785398162 \ldots \)
2: \(.367879441 \ldots \)
3: \(.632120558 \ldots \)
4: \(.345212312 \ldots \)

...

Construct “diagonal” number: \(.77677 \ldots \)

Diagonal Number: Digit \(i \) is 7 if number \(i \)'s \(i \)th digit is not 7
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000\ldots \)
1: \(.785398162\ldots \)
2: \(.367879441\ldots \)
3: \(.632120558\ldots \)
4: \(.345212312\ldots \)

:

Construct “diagonal” number: \(.77677\ldots \)

Diagonal Number: Digit \(i \) is 7 if number \(i \)'s \(i \)th digit is not 7 and 6 otherwise.
Diagonalization.

If countable, there a listing, L contains all reals. For example

0: \(.5000000000 \ldots \)
1: \(.785398162 \ldots \)
2: \(.367879441 \ldots \)
3: \(.632120558 \ldots \)
4: \(.345212312 \ldots \)

\[\vdots \]

Construct “diagonal” number: \(.77677 \ldots \)

Diagonal Number: Digit \(i \) is 7 if number \(i \)’s \(i \)th digit is not 7 and 6 otherwise. **6 is apparently isn’t afraid!**
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000... \)
1: \(.785398162... \)
2: \(.367879441... \)
3: \(.632120558... \)
4: \(.345212312... \)

Construct “diagonal” number: \(.77677... \)

Diagonal Number: Digit \(i \) is 7 if number \(i \)’s \(i \)th digit is not 7 and 6 otherwise. \(6 \) is apparently isn’t afraid!

Diagonal number for a list differs from every number in list!
If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000...\)
1: \(.785398162...\)
2: \(.367879441...\)
3: \(.632120558...\)
4: \(.345212312...\)

Construct “diagonal” number: \(.77677...\)

Diagonal Number: Digit \(i \) is 7 if number \(i \)'s \(i \)th digit is not 7 and 6 otherwise. \(6 \) is apparently isn’t afraid!

Diagonal number for a list differs from every number in list! Diagonal number not in list.
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000\ldots \)
1: \(.785398162\ldots \)
2: \(.367879441\ldots \)
3: \(.632120558\ldots \)
4: \(.345212312\ldots \)

:

Construct “diagonal” number: \(.77677\ldots \)

Diagonal Number: Digit \(i \) is 7 if number \(i \)'s \(i \)th digit is not 7 and 6 otherwise. \(6 \) is apparently isn’t afraid!

Diagonal number for a list differs from every number in list!

Diagonal number not in list.

Diagonal number is real.
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000... \)
1: \(.785398162... \)
2: \(.367879441... \)
3: \(.632120558... \)
4: \(.345212312... \)

Construct “diagonal” number: \(.77677... \)

Diagonal Number: Digit \(i \) is 7 if number \(i \)’s \(i \)th digit is not 7 and 6 otherwise. \(6 \) is apparently isn’t afraid!

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.
Contradiction!
Diagonalization.

If countable, there a listing, \(L \) contains all reals. For example

0: \(.500000000\ldots\)
1: \(.785398162\ldots\)
2: \(.367879441\ldots\)
3: \(.632120558\ldots\)
4: \(.345212312\ldots\)

Construct “diagonal” number: \(.77677\ldots\)

Diagonal Number: Digit \(i \) is 7 if number \(i \)’s \(i \)th digit is not 7 and 6 otherwise. 6 is apparently isn’t afraid!

Diagonal number for a list differs from every number in list!
Diagonal number not in list.
Diagonal number is real.
Contradiction!

Subset \([0, 1]\) is not countable!!
All reals?

Subset [0, 1] is not countable!!
All reals?

Subset $[0, 1]$ is not countable!!
What about all reals?
All reals?

Subset [0, 1] is not countable!!

What about all reals?
No.
All reals?

Subset $[0, 1]$ is not countable!!

What about all reals?
No.

Any subset of a countable set is countable.
Subset $[0, 1]$ is not countable!!

What about all reals?
No.

Any subset of a countable set is countable.
If reals are countable then so is $[0, 1]$.
1. Assume that a set S can be enumerated.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list $\Rightarrow t$ is not in the list.
5. Show that t is in S.
6. Contradiction.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list.
5. Show that t is in S.
6. Contradiction.
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list
 $\implies t$ is not in the list.
Diagonalization.

1. Assume that a set \(S \) can be enumerated.
2. Consider an arbitrary list of all the elements of \(S \).
3. Use the diagonal from the list to construct a new element \(t \).
4. Show that \(t \) is different from all elements in the list \(\implies t \) is not in the list.
5. Show that \(t \) is in \(S \).
Diagonalization.

1. Assume that a set S can be enumerated.
2. Consider an arbitrary list of all the elements of S.
3. Use the diagonal from the list to construct a new element t.
4. Show that t is different from all elements in the list
 \[\implies t \text{ is not in the list.} \]
5. Show that t is in S.
6. Contradiction.
Another diagonalization.

The set of all subsets of \(N \).
Another diagonalization.

The set of all subsets of \mathbb{N}.
Example subsets of \mathbb{N}:
Another diagonalization.

The set of all subsets of \mathbb{N}.
Example subsets of \mathbb{N}: \{0\},
Another diagonalization.

The set of all subsets of \mathbb{N}.
Example subsets of \mathbb{N}: $\{0\}$, $\{0, \ldots, 7\}$,
Another diagonalization.

The set of all subsets of \(N \).
Example subsets of \(N \): \(\{0\} \), \(\{0, \ldots, 7\} \), evens,
Another diagonalization.

The set of all subsets of N.
Example subsets of N: \{0\}, \{0, \ldots, 7\}, evens, odds,
Another diagonalization.

The set of all subsets of \(N \).
Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \), evens, odds, primes,
Another diagonalization.

The set of all subsets of \mathbb{N}.
Example subsets of \mathbb{N}: $\{0\}$, $\{0,\ldots,7\}$, evens, odds, primes, ...
Another diagonalization.

The set of all subsets of \(N \).
Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \), evens, odds, primes, ...
Assume that it is countable.
Another diagonalization.

The set of all subsets of N.
Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes, ...
Assume that it is countable.
There is a listing, L, that contains all subsets of N.
Another diagonalization.

The set of all subsets of N.
 Example subsets of N: $\{0\}$, $\{0,\ldots,7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
Another diagonalization.

The set of all subsets of N.
Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.

Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)

Another diagonalization.

The set of all subsets of \mathbb{N}.
Example subsets of \mathbb{N}: $\{0\}$, $\{0,\ldots,7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of \mathbb{N}.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

Theorem: The set of all subsets of \mathbb{N} is not countable.
(The set of all subsets of S, is the powerset of \mathbb{N}.)
Another diagonalization.

The set of all subsets of \mathbb{N}.

Example subsets of \mathbb{N}: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of \mathbb{N}.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

Theorem: The set of all subsets of \mathbb{N} is not countable.
(The set of all subsets of S, is the powerset of \mathbb{N}.)

Another diagonalization.

The set of all subsets of \mathbb{N}.
 Example subsets of \mathbb{N}: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of \mathbb{N}.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
 otherwise $i \notin D$.

D is different from ith set in L for every i.

Another diagonalization.

The set of all subsets of N.
 Example subsets of N: \{0\}, \{0, \ldots, 7\}, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
 otherwise $i \notin D$.

D is different from ith set in L for every i.

\[\implies D \text{ is not in the listing.} \]
Another diagonalization.

The set of all subsets of N.
 Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
 otherwise $i \notin D$.

D is different from ith set in L for every i.
 $\implies D$ is not in the listing.

D is a subset of N.
Another diagonalization.

The set of all subsets of \(N \).
Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \), evens, odds, primes, ...

Assume that it is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).
\[\implies \] \(D \) is not in the listing.

\(D \) is a subset of \(N \). \(L \) does not contain all subsets of \(N \).
Another diagonalization.

The set of all subsets of \(N \).

Example subsets of \(N \): \(\{0\} \), \(\{0,\ldots,7\} \), evens, odds, primes, ...

Assume that it is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):

If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).

otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).

\(\implies D \) is not in the listing.

\(D \) is a subset of \(N \). \(L \) does not contain all subsets of \(N \).

Contradiction.
Another diagonalization.

The set of all subsets of \(N \).
Example subsets of \(N \): \(\{0\} \), \(\{0, \ldots, 7\} \), evens, odds, primes, ...
Assume that it is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).

\[\implies D \text{ is not in the listing.} \]

\(D \) is a subset of \(N \). \(L \) does not contain all subsets of \(N \).

Contradiction.

Theorem: The set of all subsets of \(N \) is not countable.
Another diagonalization.

The set of all subsets of N.

Example subsets of N: $\{0\}$, $\{0, \ldots, 7\}$, evens, odds, primes, ...

Assume that it is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.

$\implies D$ is not in the listing.

D is a subset of N. L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
Diagonalize Natural Number.

Natural numbers have a listing, \(L \).
Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, D:

- differ from ith element of L in ith digit.
Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, D:
 differ from ith element of L in ith digit.

Differs from all elements of listing.
Diagonalize Natural Number.

Natural numbers have a listing, \(L \).

Make a diagonal number, \(D \):
 differ from \(i \)th element of \(L \) in \(i \)th digit.

Differs from all elements of listing.

\(D \) is a natural number...
Diagonalize Natural Number.

Natural numbers have a listing, L.

Make a diagonal number, D:

- differ from ith element of L in ith digit.

Differs from all elements of listing.

D is a natural number... Not.
Natural numbers have a listing, L.
Make a diagonal number, D:
 differ from ith element of L in ith digit.
Differs from all elements of listing.
D is a natural number... Not.
Any natural number has a finite number of digits.
Natural numbers have a listing, L.

Make a diagonal number, D:

- differ from ith element of L in ith digit.

Differs from all elements of listing.

D is a natural number... Not.

Any natural number has a finite number of digits.

“Construction” requires an infinite number of digits.
The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals.
The Continuum hypothesis.

There is no set with cardinality between the naturals and the reals.

First of Hilbert’s problems!
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?
Cardinalities of uncountable sets?

Cardinality of $(0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow (0, 1]$.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow (0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \rightarrow (0, 1].\)

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq \frac{1}{2} \\
 \frac{1}{4x} & x > \frac{1}{2}
\end{cases}
\]

One to one.

Onto. Every element in \((0, 1]\) has pre-image.
Cardinalities of uncountable sets?

Cardinality of \((0,1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \rightarrow (0,1].\)

\[
f(x) = \begin{cases}
x + \frac{1}{2} & 0 \leq x \leq \frac{1}{2} \\
\frac{1}{4x} & x > \frac{1}{2}
\end{cases}
\]

One to one. \(x \neq y\)
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \rightarrow (0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)
If both in \([0, 1/2]\),
Cardinalities of uncountable sets?

Cardinality of $(0,1]$ smaller than all the reals?

$f : R^+ \rightarrow (0,1]$.

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. $x \neq y$

If both in $[0,1/2]$, a shift
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \to (0, 1].\)

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y\)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y)\).
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \rightarrow (0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq \frac{1}{2} \\
 \frac{1}{4x} & x > \frac{1}{2}
\end{cases} \]

One to one. \(x \neq y\)
If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y)\).
If neither in \([0, 1/2]\)
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \rightarrow (0, 1]\).

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y\)
If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y)\).
If neither in \([0, 1/2]\) a division
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \to (0, 1]. \]

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y\)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y)\).

If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y)\).
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \to (0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y) \).

If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y) \).

If one is in \([0, 1/2]\) and one isn’t,
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[f : R^+ \to (0, 1]. \]

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y \)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y) \).

If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y) \).

If one is in \([0, 1/2]\) and one isn’t, different ranges
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \rightarrow (0, 1] \).

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq \frac{1}{2} \\
 \frac{1}{4x} & x > \frac{1}{2}
\end{cases}
\]

One to one. \(x \neq y\)
If both in \([0, 1/2]\), a shift \(\Rightarrow f(x) \neq f(y)\).
If neither in \([0, 1/2]\) a division \(\Rightarrow f(x) \neq f(y)\).
If one is in \([0, 1/2]\) and one isn’t, different ranges \(\Rightarrow f(x) \neq f(y)\).
Cardinalities of uncountable sets?

Cardinality of \((0,1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \to (0,1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)

If both in \([0,1/2]\), a shift \(\implies f(x) \neq f(y). \)

If neither in \([0,1/2]\) a division \(\implies f(x) \neq f(y). \)

If one is in \([0,1/2]\) and one isn’t, different ranges \(\implies f(x) \neq f(y). \)

Onto. Every element in \((0,1]\) has pre-image.
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[f : \mathbb{R}^+ \rightarrow (0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y) \).
If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y) \).
If one is in \([0, 1/2]\) and one isn’t, different ranges \(\implies f(x) \neq f(y) \).

Onto. Every element in \((0, 1]\) has pre-image.

Bijection!
Cardinalities of uncountable sets?

Cardinality of $(0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow (0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$
If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.
If neither in $[0, 1/2]$ a division $\implies f(x) \neq f(y)$.
If one is in $[0, 1/2]$ and one isn’t, different ranges $\implies f(x) \neq f(y)$.

Onto. Every element in $(0, 1]$ has pre-image.

Bijection!
Cardinalities of uncountable sets?

Cardinality of \((0, 1]\) smaller than all the reals?

\[
f : R^+ \to (0, 1].
\]

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y\)

If both in \([0, 1/2]\), a shift \(\implies f(x) \neq f(y)\).

If neither in \([0, 1/2]\) a division \(\implies f(x) \neq f(y)\).

If one is in \([0, 1/2]\) and one isn’t, different ranges \(\implies f(x) \neq f(y)\).

Onto. Every element in \((0, 1]\) has pre-image.

Bijection!

\([0, 1]\) is same cardinality as nonegative reals.
Generalized Continuum hypothesis.

There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.
There is no infinite set whose cardinality is between the cardinality of an infinite set and its power set.

The powerset of a set is the set of all subsets.
Resolution of hypothesis?

Gödel. 1940.

Can't use math!
If math doesn't contain a contradiction.
This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?

Can a program refer to itself?

Uh oh....
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
This statement is a lie.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
This statement is a lie.

Is the statement above true?
The barber shaves every person who does not shave themselves.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
This statement is a lie.
Is the statement above true?
The barber shaves every person who does not shave themselves.
Who shaves the barber?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.

This statement is a lie.

Is the statement above true?

The barber shaves every person who does not shave themselves.

Who shaves the barber?

Self reference.

Can a program refer to a program?
Can a program refer to itself?
Resolution of hypothesis?

Gödel. 1940.
Can’t use math!
If math doesn’t contain a contradiction.
This statement is a lie.
Is the statement above true?
The barber shaves every person who does not shave themselves.
Who shaves the barber?
Self reference.
Can a program refer to a program?
Can a program refer to itself?
Uh oh....
Next Topic: Undecidability.

- Undecidability.
Barber paradox.

Barber announces:
Barber paradox.

Barber announces:
“The barber shaves every person who does not shave themselves.”
Barber paradox.

Barber announces:
“The barber shaves every person who does not shave themselves.”

Who shaves the barber?
Barber paradox.

Barber announces:
“The barber shaves every person who does not shave themselves.”

Who shaves the barber?

Get around paradox?
Barber paradox.

Barber announces:
“The barber shaves every person who does not shave themselves.”

Who shaves the barber?

Get around paradox?
The barber lies.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \quad (1)$$
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \quad (1) \]

\(y \) is the set of elements that satisfies the proposition \(P(x) \).
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x))$$ \hspace{1cm} (1)

y is the set of elements that satisfies the proposition $P(x)$.

$P(x) = x \notin x$.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \).

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

$$\exists y \forall x (x \in y \iff P(x)) \quad (1)$$

y is the set of elements that satisfies the proposition $P(x)$.

$P(x) = x \notin x$.

There exists a y that satisfies statement 1 for $P(\cdot)$.

Take $x = y$.
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y\) is the set of elements that satisfies the proposition \(P(x)\).

\(P(x) = x \notin x\).

There exists a \(y\) that satisfies statement 1 for \(P(\cdot)\).

Take \(x = y\).

\[y \in y \iff y \notin y. \]
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \notin x \).

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \notin y. \]

Oops!
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \]

(1)

y is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \not\in x. \)

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y. \)

\[y \in y \iff y \notin y. \]

Oops!

What type of object is a set that contain sets?
Russell’s Paradox.

Naive Set Theory: Any definable collection is a set.

\[\exists y \forall x (x \in y \iff P(x)) \] \hspace{1cm} (1)

\(y \) is the set of elements that satisfies the proposition \(P(x) \).

\(P(x) = x \not\in x. \)

There exists a \(y \) that satisfies statement 1 for \(P(\cdot) \).

Take \(x = y \).

\[y \in y \iff y \not\in y. \]

Oops!

What type of object is a set that contain sets?

Axioms changed.
Changing Axioms?

Goedel: Any set of axioms is either

Concrete example:
Continuum hypothesis: "no cardinality between reals and naturals."
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW: Cantor... bipolar disorder...
Goedel... starved himself out of fear of being poisoned...
Russell... was fine... but for... two schizophrenic children...
Dangerous work? See Logicomix by Doxiaidis, Papadimitriou (professor here?), Papadatos, Di Donna.
Changing Axioms?

Goedel: Any set of axioms is either inconsistent (can prove false statements) or
Changing Axioms?

Goedel: Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)
Changing Axioms?

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:

BTW:

Cantor .. bipolar disorder..

Goedel .. starved himself out of fear of being poisoned..

Russell .. was fine... but for ... two schizophrenic children..

Dangerous work?

See Logicomix by Doxiaidis, Papadimitriou (professor here?), Papadatos, Di Donna.
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and
naturals.”
Changing Axioms?

Goedel: Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatility between reals and naturals.”
Continuum hypothesis not disprovable in ZFC
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC(Goedel 1940.)
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC(Goedel 1940.)
Continuum hypothesis not provable.
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)
Changing Axioms?

Goedel: Any set of axioms is either inconsistent (can prove false statements) or incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and
naturals.”
Continuum hypothesis not disprovable in ZFC(Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields
medal in logic)

BTW:
Cantor
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and
 naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields
 medal in logic)

BTW:
Cantor ..bipolar disorder..
Changing Axioms?

Goedel: Any set of axioms is either

inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel

Russell.. was fine...
..but for...
two schizophrenic children..

Dangerous work?
See Logicomix by Doxiaidis, Papadimitriou (professor here?),
Papadatos, Di Donna.
Changing Axioms?

Goedel: Any set of axioms is either
- **inconsistent** (can prove false statements) or
- **incomplete** (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Changing Axioms?

Goedel: Any set of axioms is either **inconsistent** (can prove false statements) or **incomplete** (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinatity between reals and naturals.”
Continuum hypothesis not disprovable in ZFC(Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor..bipolar disorder..
Goedel..starved himself out of fear of being poisoned..
Russell..was fine...
Changing Axioms?

Goedel: Any set of axioms is either
inconsistent (can prove false statements) or
incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”

Continuum hypothesis not disprovable in ZFC (Goedel 1940.)

Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Changing Axioms?

Goedel: Any set of axioms is either
 inconsistent (can prove false statements) or
 incomplete (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and
naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields
medal in logic)

BTW:
Cantor .. bipolar disorder..
Goedel .. starved himself out of fear of being poisoned..
Russell .. was fine.....but for ... two schizophrenic children..
Dangerous work?
Changing Axioms?

Goedel: Any set of axioms is either **inconsistent** (can prove false statements) or **incomplete** (true statements cannot be proven.)

Concrete example:
Continuum hypothesis: “no cardinality between reals and naturals.”
Continuum hypothesis not disprovable in ZFC (Goedel 1940.)
Continuum hypothesis not provable. (Cohen 1963: only Fields medal in logic)

BTW:
Cantor ..bipolar disorder..
Goedel ..starved himself out of fear of being poisoned..
Russell .. was fine.....but for ...two schizophrenic children..
Dangerous work?

See Logicomix by Doxiaidis, Papadimitriou (professor here?), Papadatos, Di Donna.
Is it actually useful?

Write me a program checker!
Is it actually useful?

Write me a program checker!
Check that the compiler works!
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
\[P \ - \ \text{program} \]
Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$

P - program

I - input.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$
- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice: Need a computer...with the notion of a stored program!!!! (not an adding machine! not a person and an adding machine.)
Program is a text string. Text string can be an input to a program. Program can be an input to a program.
Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Is it actually useful?

Write me a program checker!

Check that the compiler works!

How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
\[
\begin{align*}
P & \text{ - program} \\
I & \text{ - input.}
\end{align*}
\]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:

Need a computer
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[HALT(P, I)\]
- \(P\) - program
- \(I\) - input.

Determines if \(P(I)\) (\(P\) run on \(I\)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[HALT(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine!)
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
\[\begin{align*}
P & \text{- program} \\
I & \text{- input.}
\end{align*} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$

P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$$HALT(P, I)$$
- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

$HALT(P, I)$

P - program
I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.
Is it actually useful?

Write me a program checker!
Check that the compiler works!
How about.. Check that the compiler terminates on a certain input.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
\[I - \text{input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.
Implementing HALT.
Implementing HALT.

\[\text{HALT}(P, I) \]
Implementing HALT.

$HALT(P, I)$

P - program
Implementing HALT.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.
Implementing HALT.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.
Implementing HALT.

\[
HALT(P, I)
\]

- \(P\) - program
- \(I\) - input.

Determines if \(P(I)\) (\(P\) run on \(I\)) halts or loops forever.

Run \(P\) on \(I\) and check!
Implementing HALT.

$HALT(P, I)$
- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Run P on I and check!

How long do you wait?
Implementing HALT.

\[\text{HALT}(P, I) \]
\[P - \text{program} \]
\[I - \text{input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.
Run \(P \) on \(I \) and check!
How long do you wait?
Something about infinity here, maybe?
Halt does not exist.
Halt does not exist.

\[\text{HALT}(P, I) \]
Halt does not exist.

\[\text{HALT}(P, I) \]

\[P \text{- program} \]
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P\) - program
- \(I\) - input.
Halt does not exist.

HALT(P, I)

P - program

I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes!
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

 Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No!
Halt does not exist.

\[HALT(P, I) \]

\[P \] - program

\[I \] - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(HALT \).

Proof: Yes! No! Yes!

What is Rao talking about?

(A) Rao is confused.

(B) Fermat's Theorem.

(C) Diagonalization.

(C). maybe (A) too.
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(\text{HALT} \).

Proof: Yes! No! Yes! No!
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(\text{HALT} \).

Proof: Yes! No! Yes! No! No!
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes!
Halt does not exist.

$HALT(P, I)$

- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Theorem: There is no program $HALT$.

Proof: Yes! No! Yes! No! No! Yes! No!
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes!
Halt does not exist.

\[HALT(P, I) \]
 \(P \) - program
 \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{- program} \]
\[I \text{- input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is Rao talking about?
Halt does not exist.

\[\text{HALT}(P, I) \]
\hspace{1cm} P - program
\hspace{1cm} I - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is Rao talking about?
(A) Rao is confused.
Halt does not exist.

\[HALT(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(HALT \).

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is Rao talking about?
(A) Rao is confused.
(B) Fermat’s Theorem.
Halt does not exist.

HALT(\(P, I\))
- \(P\) - program
- \(I\) - input.

Determines if \(P(I)\) (\(P\) run on \(I\)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is Rao talking about?
(A) Rao is confused.
(B) Fermat’s Theorem.
(C) Diagonalization.
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program \(\text{HALT} \).

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is Rao talking about?
(A) Rao is confused.
(B) Fermat’s Theorem.
(C) Diagonalization.

(C).
Halt does not exist.

\[\text{HALT}(P, I) \]

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..

What is Rao talking about?

(A) Rao is confused.
(B) Fermat’s Theorem.
(C) Diagonalization.

(C). maybe (A) too.
Halt and Turing.

Proof:

Assume there is a program \(\text{HALT} \) \((\cdot, \cdot)\).

1. If \(\text{Turing}(P) \) halts, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program \(\text{HALT} \).

There is text that "is" the program \(\text{Turing} \).

See above!

Can run Turing on Turing!

Does \(\text{Turing}(\text{Turing}) \) halt?

Case 1: \(\text{Turing}(\text{Turing}) \) halts

\(\Rightarrow \)

\(\text{HALTS}(\text{Turing}, \text{Turing}) = \text{halts} \)

\(\Rightarrow \)

\(\text{Turing}(\text{Turing}) \) loops forever.

Case 2: \(\text{Turing}(\text{Turing}) \) loops forever

\(\Rightarrow \)

\(\text{HALTS}(\text{Turing}, \text{Turing}) \neq \text{halts} \)

\(\Rightarrow \)

\(\text{Turing}(\text{Turing}) \) halts.

Contradiction.

Program \(\text{HALT} \) does not exist!

Questions?
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Case 1: $Turing(Turing)$ halts $= \Rightarrow$ then $HALT(Turing, Turing) = halts = \Rightarrow$ $Turing(Turing)$ loops forever.

Case 2: $Turing(Turing)$ loops forever $= \Rightarrow$ then $HALT(Turing, Turing) \neq halts = \Rightarrow$ $Turing(Turing)$ halts.

Contradiction.

Program $HALT$ does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

$Turing(P)$
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P, P) = \text{halts}$, then go into an infinite loop.
2. Otherwise, halt immediately.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P, P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

$\text{Turing}(P)$

1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that "is" the program $HALT$.
There is text that is the program $Turing$.

Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing. **See above!**
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing. See above!

Can run Turing on Turing!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

$\text{Turing}(P)$
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$. There is text that “is” the program $HALT$. There is text that is the program $Turing$. See above! Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?
Halt and Turing.

Proof: Assume there is a program \(\text{HALT}(\cdot, \cdot) \).

Turing(P)

1. If \(\text{HALT}(P, P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.

There is text that “is” the program HALT.
There is text that is the program Turing. **See above!**
Can run Turing on Turing!

Does **Turing(Turing)** halt?

Case 1: Turing(Turing) halts
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot, \cdot) \).

\begin{itemize}
 \item Turing(P)
 \begin{enumerate}
 \item If \(HALT(P, P) = \text{"halts"} \), then go into an infinite loop.
 \item Otherwise, halt immediately.
 \end{enumerate}
\end{itemize}

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing. See above!
Can run Turing on Turing!

Does Turing(Turing) halt?

Case 1: Turing(Turing) halts
 \(\implies \) then \(HALTS(Turing, Turing) = \text{halts} \)
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

$Turing(P)$
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$. **See above!**
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

Case 1: $Turing(Turing)$ halts
\implies then $HALTS(Turing, Turing) =$ halts
\implies $Turing(Turing)$ loops forever.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P, P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$. See above!
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

Case 1: $Turing(Turing)$ halts
⇒ then $HALTS(Turing, Turing) = \text{halts}$
⇒ $Turing(Turing)$ loops forever.

Case 2: $Turing(Turing)$ loops forever
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

$Turing(P)$
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$. See above!
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

Case 1: $Turing(Turing)$ halts
\[\implies \text{then } HALTS(Turing, Turing) = \text{halts} \]
\[\implies Turing(Turing) \text{ loops forever.} \]

Case 2: $Turing(Turing)$ loops forever
\[\implies \text{then } HALTS(Turing, Turing) \neq \text{halts} \]
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program Turing. See above!
Can run Turing on Turing!

Does Turing(Turing) halt?

Case 1: Turing(Turing) halts
\[\implies \text{then } HALTS(Turing, Turing) = \text{halts} \]
\[\implies \text{Turing(Turing) loops forever.} \]

Case 2: Turing(Turing) loops forever
\[\implies \text{then } HALTS(Turing, Turing) \neq \text{halts} \]
\[\implies \text{Turing(Turing) halts.} \]
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot, \cdot) \).

Turing(P)
1. If \(HALT(P, P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing. **See above!**
Can run Turing on Turing!

Does \(Turing(Turing) \) halt?

Case 1: \(Turing(Turing) \) halts
\[\implies \text{then } HALTS(Turing, Turing) = \text{halts} \]
\[\implies Turing(Turing) \text{ loops forever.} \]

Case 2: \(Turing(Turing) \) loops forever
\[\implies \text{then } HALTS(Turing, Turing) \neq \text{halts} \]
\[\implies Turing(Turing) \text{ halts.} \]

Contradiction.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that “is” the program HALT. There is text that is the program Turing. See above! Can run Turing on Turing!

Does Turing(Turing) halt?

Case 1: Turing(Turing) halts
 \Rightarrow then $HALTS(Turing, Turing) = \text{halts}$
 \Rightarrow Turing(Turing) loops forever.

Case 2: Turing(Turing) loops forever
 \Rightarrow then $HALTS(Turing, Turing) \neq \text{halts}$
 \Rightarrow Turing(Turing) halts.

Contradiction. Program HALT does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$\text{Turing}(P)$
1. If $HALT(P,P) \text{=} \text{“halts”}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program Turing. *See above!*
Can run Turing on Turing!

Does $\text{Turing}(\text{Turing})$ halt?

Case 1: $\text{Turing}(\text{Turing})$ halts
 \implies then $\text{HALTS}(\text{Turing}, \text{Turing}) \text{=} \text{halts}$
 \implies $\text{Turing}(\text{Turing})$ loops forever.

Case 2: $\text{Turing}(\text{Turing})$ loops forever
 \implies then $\text{HALTS}(\text{Turing}, \text{Turing}) \neq \text{halts}$
 \implies $\text{Turing}(\text{Turing})$ halts.

Contradiction. Program $HALT$ does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

$Turing(P)$
1. If $HALT(P,P) =$“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$. *See above!*
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

Case 1: $Turing(Turing)$ halts

\implies then $HALTS(Turing, Turing) = \text{halts}$

\implies $Turing(Turing)$ loops forever.

Case 2: $Turing(Turing)$ loops forever

\implies then $HALTS(Turing, Turing) \neq \text{halts}$

\implies $Turing(Turing)$ halts.

Contradiction. Program $HALT$ does not exist!

Questions?
Wow.

A lot of mind bending stuff.

See you on Friday to regroup!
Wow.

A lot of mind bending stuff.
See you on Friday to regroup!