
Today.

Finish undecidability.

Start counting.

Halting Problem.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Notice:
Need a computer
...with the notion of a stored program!!!!
(not an adding machine! not a person and an adding machine.)

Program is a text string.
Text string can be an input to a program.
Program can be an input to a program.

Implement HALT?

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Run P on I and check!

How long do you wait?

Something about infinity here, maybe?

Halt does not exist.

HALT (P, I)
P - program
I - input.

Determines if P(I) (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing. See above!
Can run Turing on Turing!

Does Turing(Turing) halt?

Case 1: Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Case 2: Turing(Turing) loops forever
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Contradiction. Program HALT does not exist!
Questions?

Another view of proof: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

P1 P2 P3 · · ·

P1 H H L · · ·
P2 L L H · · ·
P3 L H H · · ·
...

...
...

...
. . .

Halt - diagonal.
Turing - is not Halt.
and is different from every Pi on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!



Wow. Proof play by play.

Assumed HALT(P, I) existed.

What is P? Text.
What is I? Text.

What does it mean to have a program HALT(P, I).
You have Text that is the program HALT(P, I).

Have Text that is the program TURING.
Here it is!!
Turing(P)

1. If HALT(P,P) =“halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Turing “diagonalizes” on list of program.
It is not a program!!!!
=⇒ HALT is not a program.

Questions?

We are so smart!

Wow, that was easy!

We should be famous!

No computers for Turing!

In Turing’s time.

No computers.

Adding machines.
e.g., Babbage (from table of logarithms) 1812.

Concept of program as data wasn’t really there.

Turing machine.

A Turing machine.
– an (infinite) tape with characters
– be in a state, and read a character
– move left, right, and/or write a character.

Universal Turing machine
– an interpreter program for a Turing machine
– where the tape could be a description of a ... Turing machine!

Now that’s a computer!

Turing: AI, self modifying code, learning...

Turing and computing.

Just a mathematician?

“Wrote” a chess program.

Simulated the program by hand to play chess.

It won! Once anyway.

Involved with computing labs through the 40s.



Church, Gödel and Turing.

Church proved an equivalent theorem. (Previously.)

Used λ calculus....which is... Lisp (Scheme)!!!
.. functional part. Scheme’s lambda is calculus’s λ !

Programming languages! javascript, ruby, python....

Gödel: Incompleteness theorem.

Any formal system either is inconsistent or incomplete.
Inconsistent: A false sentence can be proven.
Incomplete: There is no proof for some sentence in the

system.

Along the way: “built” computers out of arithmetic.
Showed that every mathematical statement corresponds to

.... a natural number! ! ! ! Same cardinality as...Text.
Today:Programs can be written in ascii.

Computing on top of computing...

Computer, assembly code, programming language, browser,
html, javascript..

We can’t get enough of building more Turing machines.

Undecidable problems.
Does a program, P, print “Hello World”?
How? What is P? Text!!!!!!

Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: “ xn + yn = 1?”
Problem is undecidable.

Be careful!

Is there an integer solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations and

always correctly output whether it has an integer solution.

More about Alan Turing.

I Brilliant codebreaker during WWII, helped break German
Enigma Code (which probably shortened war by 1 year).

I Seminal paper in numerical analysis: Condition number.
Math 54 doesn’t really work.

Almost dependent matrices.
I Seminal paper in mathematical biology.

Person: embryo is blob. Legs, arms, head.... How?
Fly: blob. Torso becomes striped.
Developed chemical reaction-diffusion networks that

break symmetry.

Back to technical..
This statement is a lie. Neither true nor false!

Every person who doesn’t shave themselves is shaved by the
barber.

Who shaves the barber?

def Turing(P):
if Halts(P,P): while(true): pass
else:
return

...Text of Halt...

Halt Progam =⇒ Turing Program. (P =⇒ Q)

Turing(“Turing”)? Neither halts nor loops! =⇒ No Turing
program.

No Turing Program =⇒ No halt program. (¬Q =⇒ ¬P)

Program is text, so we can pass it to itself, or refer to self.

Summary: decidability.

Computer Programs are an interesting thing.
Like Math.
Formal Systems.

Computer Programs cannot completely “understand” computer
programs.

Computation is a lens for other action in the world.



Probability

What’s to come? Probability.

A bag contains:

What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide.

For now: Counting!

Outline: basics

1. Counting.
2. Tree
3. Rules of Counting
4. Sample with/without replacement where order

does/doesn’t matter.

Count?

How many outcomes possible for k coin tosses?
How many poker hands?
How many handshakes for n people?
How many diagonals in a convex polygon?
How many 10 digit numbers?
How many 10 digit numbers without repetition?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from {0,1}?
How would you make one sequence?
How many different ways to do that making?

000

0

001

1

0

010

0

011

1

1

0

100

0

101

1

0

110

0

111

1

1

1

8 leaves which is 2×2×2. One leaf for each string.
8 3-bit srings!

First Rule of Counting: Product Rule

Objects made by choosing from n1, then n2, . . ., then nk
the number of objects is n1×n2 · · ·×nk .

n1

×n2

×n3

· · · · · · · · · · · ·
In picture, 2×2×3 = 12!

Using the first rule..

How many outcomes possible for k coin tosses?

2 ways for first choice, 2 ways for second choice, ...
2×2 · · · ×2 = 2k

How many 10 digit numbers?

10 ways for first choice, 10 ways for second choice, ...
10×10 · · · ×10 = 10k

How many n digit base m numbers?

m ways for first, m ways for second, ...
mn



Functions, polynomials.

How many functions f mapping S to T ?

|T | ways to choose for f (s1), |T | ways to choose for f (s2), ...

....|T ||S|

How many polynomials of degree d modulo p?

p ways to choose for first coefficient, p ways for second, ...
...pd+1

p values for first point, p values for second, ...
...pd+1

Questions?

Permutations.
How many 10 digit numbers without repeating a digit?

(leading zeros are ok.)

10 ways for first, 9 ways for second, 8 ways for third, ...

... 10∗9∗8 · · · ∗1 = 10!.1

How many different samples of size k from n numbers without
replacement.

n ways for first choice, n−1 ways for second,
n−2 choices for third, ...

... n ∗ (n−1)∗ (n−2) · ∗(n−k + 1) = n!
(n−k)! .

How many orderings of n objects are there?
Permutations of n objects.

n ways for first, n−1 ways for second,
n−2 ways for third, ...

... n ∗ (n−1)∗ (n−2) · ∗1 = n!.
1By definition: 0! = 1.

One-to-One Functions.

How many one-to-one functions from |S| to |S|.
|S| choices for f (s1), |S|−1 choices for f (s2), ...

So total number is |S|× |S|−1 · · ·1 = |S|!
A one-to-one function is a permutation!

Counting sets..when order doesn’t matter.

How many poker hands?

52×51×50×49×48 ???

Are A,K ,Q,10,J of spades
and 10,J,Q,K ,A of spades the same?

Second Rule of Counting: If order doesn’t matter count
ordered objects and then divide by number of orderings.2

Number of orderings for a poker hand: “5!”
(The “!” means factorial, not Exclamation.)

52×51×50×49×48
5!Can write as...
52!

5!×47!

Generic: ways to choose 5 out of 52 possibilities.

2When each unordered object corresponds equal numbers of ordered
objects.

Ordered to unordered.

Second Rule of Counting: If order doesn’t matter count
ordered objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.

How many red nodes mapped to one blue node? 3.

How many blue nodes (unordered objects)? 9
3 = 3.

How many poker deals? 52 ·51 ·50 ·49 ·48.

How many poker deals per hand?
Map each deal to ordered deal: 5!

How many poker hands? 52·51·50·49·48
5!

Questions?

..order doesn’t matter.
Choose 2 out of n?

n× (n−1)

2
=

n!

(n−2)!×2

Choose 3 out of n?

n× (n−1)× (n−2)

3!
=

n!

(n−3)!×3!

Choose k out of n?

n!

(n−k)!×k !

Notation:
(n

k

)
and pronounced “n choose k .”

Familiar? Questions?



Example: Visualize the proof..
First rule: n1×n2 · · ·×n3. Product Rule.
Second rule: when order doesn’t matter divide...

. . .. . .

. . .. . . ∆

3 card Poker deals: 52×51×50 = 52!
49! . First rule.

Poker hands: ∆?
Hand: Q,K ,A.
Deals: Q,K ,A : Q,A,K : K ,A,Q : K ,A,Q : A,K ,Q : A,Q,K .

∆ = 3×2×1 First rule again.
Total: 52!

49!3! Second Rule!

Choose k out of n.
Ordered set: n!

(n−k)! Orderings of one hand? k ! (By first rule!)
=⇒ Total: n!

(n−k)!k! Second rule.

Example: Anagram

First rule: n1×n2 · · ·×n3. Product Rule.
Second rule: when order doesn’t matter divide...

. . .. . .

. . .. . . ∆

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same.
What is ∆?
ANAGRAM
A1NA2GRA3M , A2NA1GRA3M , ...

∆ = 3×2×1 = 3! First rule!
=⇒ 7!

3! Second rule!

Some Practice.
How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways for second, 1 for last.

=⇒ 3×2×1 = 3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for A!

total orderings of 7 letters. 7!
total “extra counts” or orderings of three A’s? 3!

Total orderings? 7!
3!

How many orderings of MISSISSIPPI?

4 S’s, 4 I’s, 2 P’s.
11 letters total.

11! ordered objects.
4!×4!×2! ordered objects per “unordered object”

=⇒ 11!
4!4!2! .

More counting on Monday.


