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Counting sets..when order doesn’t matter.

How many poker hands?
52 x 51 x50 x 49 x 48 ??7?

Are A K,Q,10,J of spades

and 10,J, Q, K, A of spades the same?

Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings."

Number of orderings for a poker hand: “5!”

52 x 51 x50 x 49 x 48
5!
52!
51 x 47!
Generic: ways to choose 5 out of 52 possibilities.
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"When each unordered object corresponds equal numbers of ordered
objects.
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Ordered to unordered.

Second Rule of Counting: If order doesn’t matter count ordered
objects and then divide by number of orderings.

How many red nodes (ordered objects)? 9.
How many red nodes mapped to one blue node? 3.
How many blue nodes (unordered objects)? % =3.
How many poker deals? 52-51-50-49-48.

How many poker deals per hand?
Map each deal to ordered deal: 5!

How many poker hands? 52:21:30-49:48
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Example: Anagram

First rule: ny x no--- x n3. Product Rule.
Second rule: when order doesn’t matter divide...

A

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is A?
ANAGRAM
A{NA>GRA3M , Ao NA{GRAsM, ...
A=3x2x1=3! Firstrule!

= 2 Second rule!
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How many orderings of letters of CAT?

3 ways to choose first letter, 2 ways for second, 1 for last.
= 3x2x1=3! orderings

How many orderings of the letters in ANAGRAM?

Ordered, except for Al

total orderings of 7 letters. 7!
total “extra counts” or orderings of three A’s? 3!

Total orderings? %
How many orderings of MISSISSIPPI?

48S’s,41s,2P’s.
11 letters total.
11! ordered objects.
4! x 41 x 2! ordered objects per “unordered object”

111
= 41
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Sample k items out of n

Without replacement:
Order matters: nxn—1xn—2...xn—k+1= (nf!k)!
Order does not matter:
Second Rule: divide by number of orders — “k!”
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“n choose k”

With Replacement.
Order matters: nxnx...n=nk
Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!
Different number of unordered elts map to each unordered elt.

Unordered elt: 1,2,3 3! ordered elts map to it.
Unordered elt: 1,2,2 % ordered elts map to it.

How do we deal with this mess??
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Splitting up some money....

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice(2°), divide out order ???

5 dollars for Bob and 0 for Alice:
one ordered set: (B, B, B, B, B).

4 for Bob and 1 for Alice:

5 ordered sets: (A,B,B.B,B) ; (B,A,B,B,B); ...

“Sorted” way to specify, first Alice’s dollars, then Bob’s.
(B,B,B,B,B): 1:(B,B,B,B,B)
(A,B,B,B,B): 5:(A,B,B,B,B),(B,AB,B,B),(B,B,A,B,B)....
(AA,B,B,B): (g);(A,A,B,B,B),(A,B,A,B,B),(A,B,B,A,B),...

and so on.

Second rule of counting is no good here!
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Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.

Alice gets 3, Bob gets 1, Eve gets 1: (A,A A, B, E).

Separate Alice’s dollars from Bob’s and then Bob’s from Eve’s.
Five dollars are five stars: xxx*x.

Alice: 2, Bob: 1, Eve: 2.

Stars and Bars: *x | x| % *.

Alice: 0, Bob: 1, Eve: 4.

Stars and Bars: | x| % %% *.

Each split “is” a sequence of stars and bars.
Each sequence of stars and bars “is” a split.

Counting Rule: if there is a one-to-one mapping between two
sets they have the same size!
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Stars and Bars.

How many different 5 star and 2 bar diagrams?
| % | % % % *.

7 positions in which to place the 2 bars.
Alice: 0; Bob 1; Eve: 4

| x| * % % *.

Bars in first and third position.

Alice: 1; Bob 4; Eve: 0

x| ko koK.

Bars in second and seventh position.

(3) ways to do so and

(3) ways to split 5 dollars among 3 people.
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Stars and Bars.

Ways to add up n numbers to sum to k? or

“ k from n with replacement where order doesn’t matter.”

In general, k stars n— 1 bars.
Fok | K[| Kk

n+ k — 1 positions from which to choose n— 1 bar positions.

n+k—1
n—1
Or: k unordered choices from set of n possibilities with replacement.
Sample with replacement where order doesn’t matter.



Quick review of the basics.

Firstrule: ny xno--- x ns.



Quick review of the basics.

Firstrule: ny xno--- x ns.

k Samples with replacement from n items: n.



Quick review of the basics.

Firstrule: ny xno--- x ns.

k Samples with replacement from n items: n.
Sample without replacement: (nf—'k),



Quick review of the basics.

Firstrule: ny xno--- x ns.

k Samples with replacement from n items: n.
Sample without replacement: (nf—'k),

Second rule: when order doesn’t matter divide..when possible.



Quick review of the basics.

Firstrule: ny xno--- x ns.

k Samples with replacement from n items: n.
Sample without replacement: (nf—'k),

Second rule: when order doesn’t matter divide..when possible.

Sample without replacement and order doesn’t matter: (}) = (n%k'),kl
“n choose k”



Quick review of the basics.

Firstrule: ny xno--- x ns.

k Samples with replacement from n items: n.
Sample without replacement: (nf—'k),

Second rule: when order doesn’t matter divide..when possible.

Sample without replacement and order doesn’t matter: (}) = (n%k'),kl

“n choose k”
One-to-one rule: equal in number if one-to-one correspondence.



Quick review of the basics.

Firstrule: ny xno--- x ns.

k Samples with replacement from n items: n.
Sample without replacement: (nf—'k),

Second rule: when order doesn’t matter divide..when possible.

Sample without replacement and order doesn’t matter: (}) = (n%k'),kl

“n choose k”

One-to-one rule: equal in number if one-to-one correspondence.

k+n—1)_

Sample with replacement and order doesn’t matter: ( i
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets Sand T, |SUT|=|S|+|T]|
Used to reason about all subsets
by adding number of subsets of size 1, 2, 3,...

Also reasoned about subsets that contained
or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule: For any Sand T,
|[SUT|=|S|+|T|—|SNT]|.

Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S| = 10°

T = phone numbers with 7 as second digit. |T| = 10°.

SN T = phone numbers with 7 as first and second digit. |SN T| = 108.
Answer: |S|+|T|—|SNT|=10%+10° —108.
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Second Rule of counting: If order does not matter.
Count with order.  Divide by number of orderings/sorted object.
Typically: (}).
Stars and Bars: Sample k objects with replacement from n.
Order doesn’t matter.
Typically: ("K~") or ("tK77).
Inclusion/Exclusion: two sets of objects.
Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
Pascal’s Triangle Example: ("f") = (") + (7).
RHS: Number of subsets of n+ 1 items size k.
LHS: (,",) counts subsets of n+ 1 items with first item.
(%) counts subsets of n+ 1 items without first item.
Disjoint — so add!



