
CS70: On to probability.

Modeling Uncertainty: Probability Space

1. Key Points

2. Random Experiments

3. Probability Space

Key Points
I Uncertainty does not mean “nothing is known”
I Most real-world problems involve uncertainty

I Predictions:
I Will you get an A in CS70? Will the Raiders win the Super

Bowl?
I Strategy/Decision-making under uncertainty

I Drop CS 70? How much to bet on blackjack? Buy a specific
stock?

I Engineering
I Build a spam filter Improve wifi coverage. Control systems

(Internet, airplane, robots, self-driving cars)

I How to best use ‘artificial’ uncertainty?
I Play games of chance
I Design randomized algorithms.

I Probability
I Models knowledge about uncertainty: Mathematical

discipline that allows you to reason about uncertainty.
I Discovers best way to use that knowledge in making

decisions

The Magic of Probability
Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about
uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable
you to think clearly about uncertainty.

Your cost: focused attention and practice, practice, practice.

Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

I Possible outcomes: Heads (H) and Tails (T )
(One flip yields either ‘heads’ or ‘tails’.)

I Likelihoods: H : 50% and T : 50%

Random Experiment: Flip one Fair Coin
Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

I Single coin flip: 50% chance of ‘tails’ [subjectivist]

Willingness to bet on the outcome of a single flip

I Many coin flips: About half yield ‘tails’ [frequentist]

Makes sense for many flips

I Question: Why does the fraction of tails converge to the same
value every time? Statistical Regularity! Deep!

Random Experiment: Flip one Fair Coin
Flip a fair coin: model

I The physical experiment is complex. (Shape, density, initial
momentum and position, ...)

I The Probability model is simple:

I A set Ω of outcomes: Ω = {H,T}.
I A probability assigned to each outcome:

Pr [H] = 0.5,Pr [T ] = 0.5.



Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

I Possible outcomes: Heads (H) and Tails (T )

I Likelihoods: H : p ∈ (0,1) and T : 1−p

I Frequentist Interpretation:

Flip many times⇒ Fraction 1−p of tails

I Question: How can one figure out p? Flip many times

I Tautology? No: Statistical regularity!

Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model

⌦

H

T

Physical Experiment Probability Model

p

1 - p

Flip Two Fair Coins

I Possible outcomes: {HH,HT ,TH,TT} ≡ {H,T}2.

I Note: A×B := {(a,b) | a ∈ A,b ∈ B} and A2 := A×A.

I Likelihoods: 1/4 each.

Flip Glued Coins

Flips two coins glued together side by side:

I Possible outcomes: {HH,TT}.
I Likelihoods: HH : 0.5,TT : 0.5.

I Note: Coins are glued so that they show the same face.

Flip Glued Coins

Flips two coins glued together side by side:

I Possible outcomes: {HT ,TH}.
I Likelihoods: HT : 0.5,TH : 0.5.

I Note: Coins are glued so that they show different faces.

Flip two Attached Coins
Flips two coins attached by a spring:

I Possible outcomes: {HH,HT ,TH,TT}.
I Likelihoods: HH : 0.4,HT : 0.1,TH : 0.1,TT : 0.4.

I Note: Coins are attached so that they tend to show the same
face, unless the spring twists enough.



Flipping Two Coins

Here is a way to summarize the four random experiments:

I Ω is the set of possible outcomes;

I Each outcome has a probability (likelihood);

I The probabilities are ≥ 0 and add up to 1;

I Fair coins: [1]; Glued coins: [3], [4];

Spring-attached coins: [2];

Flipping Two Coins
Here is a way to summarize the four random experiments:

Important remarks:

I Each outcome describes the two coins.
I E.g., HT is one outcome of the experiment.
I It is wrong to think that the outcomes are {H,T} and that one

picks twice from that set.
I Indeed, this viewpoint misses the relationship between the two

flips.
I Each ω ∈ Ω describes one outcome of the complete experiment.
I Ω and the probabilities specify the random experiment.

Flipping n times
Flip a fair coin n times (some n ≥ 1):

I Possible outcomes: {TT · · ·T ,TT · · ·H, . . . ,HH · · ·H}.
Thus, 2n possible outcomes.

I Note: {TT · · ·T ,TT · · ·H, . . . ,HH · · ·H}= {H,T}n.

An := {(a1, . . . ,an) | a1 ∈ A, . . . ,an ∈ A}. |An|= |A|n.
I Likelihoods: 1/2n each.

Roll two Dice

Roll a balanced 6-sided die twice:

I Possible outcomes: {1,2,3,4,5,6}2 = {(a,b) | 1≤ a,b ≤ 6}.
I Likelihoods: 1/36 for each.

Probability Space.

1. A “random experiment”:

(a) Flip a biased coin;
(b) Flip two fair coins;
(c) Deal a poker hand.

2. A set of possible outcomes: Ω.

(a) Ω = {H,T};
(b) Ω = {HH,HT ,TH,TT}; |Ω|= 4;
(c) Ω = { A♠ A♦ A♣ A♥ K♠, A♠ A♦ A♣ A♥ Q♠, . . .}
|Ω|=

(52
5

)
.

3. Assign a probability to each outcome: Pr : Ω→ [0,1].

(a) Pr [H] = p,Pr [T ] = 1−p for some p ∈ [0,1]
(b) Pr [HH] = Pr [HT ] = Pr [TH] = Pr [TT ] = 1

4
(c) Pr [ A♠ A♦ A♣ A♥ K♠ ] = · · ·= 1/

(52
5

)

Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point. (Also called an outcome.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: Formalism.

In a uniform probability space each outcome ω is equally probable:
Pr [ω] = 1

|Ω| for all ω ∈ Ω.

Examples:

I Flipping two fair coins, dealing a poker hand are uniform
probability spaces.

I Flipping a biased coin is not a uniform probability space.

Probability Space: Formalism
Simplest physical model of a uniform probability space:

Red
Green

Maroon

⌦

1/8
1/8
...
1/8

Pr[!]

...

Physical experiment Probability model

A bag of identical balls, except for their color (or a label). If the bag is
well shaken, every ball is equally likely to be picked.

Ω = {white, red, yellow, grey, purple, blue, maroon, green}
Pr [blue] =

1
8
.

Probability Space: Formalism
Simplest physical model of a non-uniform probability space:

Red
Green
Yellow
Blue

⌦

3/10
4/10
2/10
1/10

Pr[!]

Physical experiment Probability model

Ω = {Red, Green, Yellow, Blue}
Pr [Red] =

3
10

,Pr [Green] =
4
10

, etc.

Note: Probabilities are restricted to rational numbers: Nk
N .

Probability Space: Formalism
Physical model of a general non-uniform probability space:

p3

Fraction p1
of circumference

p2

p!

!

12

3

Physical experiment Probability model

Purple = 2
Green = 1

Yellow 

⌦
Pr[!]

...

p1
p2

p!
. . .

!

The roulette wheel stops in sector ω with probability pω .

Ω = {1,2,3, . . . ,N},Pr [ω] = pω .

An important remark

I The random experiment selects one and only one outcome in Ω.

I For instance, when we flip a fair coin twice

I Ω = {HH,TH,HT ,TT}
I The experiment selects one of the elements of Ω.

I In this case, its wrong to think that Ω = {H,T} and that the
experiment selects two outcomes.

I Why? Because this would not describe how the two coin flips
are related to each other.

I For instance, say we glue the coins side-by-side so that they
face up the same way. Then one gets HH or TT with probability
50% each. This is not captured by ‘picking two outcomes.’

Example: Monty Hall Problem

Game Show: 3 doors.

1 Awesome prize behind one of
the doors.

2 Contestant picks a door.
Monty opens one of the
other two doors that does
not have a prize.

3 Contestant can either stick to
the original door or change
selection.

Is there any advantage to the
contestant in switching?



Controversy

The problem appeared in ”Parade” Magazine in a column by
Marilyn Vos Savant.

From the Wikipedia

Though vos Savant gave the correct answer that switching would
win two-thirds of the time, she estimates the magazine received
10,000 letters including close to 1,000 signed by PhDs, many on
letterheads of mathematics and science departments, declaring that
her solution was wrong (Tierney 1991). As a result of the publicity
the problem earned the alternative name Marilyn and the Goats.

Two experiments, one in which he switches and one in which
he doesn’t.
⌦1=
{(Correct,Switch,Lose),(Wrong1,Switch,Win),(Wrong2,Switch,Win)}.
Prob of Winning is 2

3 .Another way: He only loses if picks the
right door.

⌦2={(Correct,Stay,Win),(Wrong1,Stay,Lose),(Wrong2,Stay,Lose)}.Prob
of Winning is 1

3 .He only wins if he picks the right door.
Much better to switch!

Why were so many professional mathematicians confused? They
forgot about wrong door 2.

Monty Hall problem

Summary

Modeling Uncertainty: Probability Space

1. Random Experiment

2. Probability Space: Ω;Pr [ω] ∈ [0,1];∑ω Pr [ω] = 1.

3. Uniform Probability Space: Pr [ω] = 1/|Ω| for all ω ∈ Ω.

The n passengers of a full flight board sequentially. The first
passenger sits in the wrong (unassigned) spot. Subsequent
passengers either sit in their assigned seat or if it is not available,
pick another seat at random. What is the the probability that the
last passenger is able to sit in his assigned seat?

     .

    Probability problems can be fun


