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CS70: Discrete Math and Probability.

First (half) week...
Almost Done! Yaay!
| hope you are getting into the flow.

Waitlist/concurrent enrollment.

Waitlist: in the past have gotten people in.
Can’t promise.

Concurrent Enrollment: not always accomodated.
New scheme this year makes it easier.

Keep up, send email to fal7@eecs.org to get enrolled in gradescope,
etc.
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Theorem: (Vne N) —((3a,b,ce N) (n>3 = a"+b"=c"))
Which Theorem?
Fermat’s Last Theorem!

Remember Special Triangles:
for n=2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.
1993: Wiles ...(based in part on Ribet’s Theorem)
Movie — “Nova: The Proof”

DeMorgan Restatement:
Theorem: —=(3ne N) (3a,b,ce N) (n>3 = a"+b"=¢")
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And now: Proofs!!!

—_

. By Example.

Direct. (Prove P = Q.)

by Contraposition (Prove P — Q)
by Contradiction (Prove P.)

o~ 0 DN

by Cases
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Quick Background and Notation.

Integers closed under addition.
abeZ — at+be”Z
alb means “a divides b”.
2|47 Yes! Since for g =2, 4= (2)2.
71237 No! No g where true.
4/2? No!
Formally: a|lb < 3g € Z where b= aq.
3|15 since for g =5, 15 = 3(5).
A natural number p > 1, is prime if it is divisible only by 1 and itself.
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Another Direct Proof.

Theorem: Vne D;,(11|n) = (11]alt. sum of digits of n)
Proof: Assume 11|n.

n=100a+10b+c=11k =
99a+11b+(a—b+c)=11k =
a-b+c=11k-99a-11b =
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That is 11]alternating sum of digits.
Note: similar proof to other. In this case every —> is «—
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» The chain of reasoning started with a false statement.
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> 2x3x5x7x11x13+1=30031=259 x 509
» There is a prime in between 13 and g = 30031 that divides g.

» Proof assumed no primes in between py, and q.
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