First (half) week...

First (half) week...
Almost Done!

First (half) week...
Almost Done! Yaay!

First (half) week...
Almost Done! Yaay!
I hope you are getting into the flow.

First (half) week...
Almost Done! Yaay!
I hope you are getting into the flow.

Waitlist/concurrent enrollment.

First (half) week...

Almost Done! Yaay!

I hope you are getting into the flow.

Waitlist/concurrent enrollment.

Waitlist: in the past have gotten people in.

First (half) week...

Almost Done! Yaay!

I hope you are getting into the flow.

Waitlist/concurrent enrollment.

Waitlist: in the past have gotten people in.

Can't promise.

First (half) week...

Almost Done! Yaay!

I hope you are getting into the flow.

Waitlist/concurrent enrollment.

Waitlist: in the past have gotten people in.

Can't promise.

Concurrent Enrollment: not always accomodated.

First (half) week...

Almost Done! Yaay!

I hope you are getting into the flow.

Waitlist/concurrent enrollment.

Waitlist: in the past have gotten people in.

Can't promise.

Concurrent Enrollment: not always accommodated. New scheme this year makes it easier.

First (half) week...

Almost Done! Yaay!

I hope you are getting into the flow.

Waitlist/concurrent enrollment.

Waitlist: in the past have gotten people in.

Can't promise.

Concurrent Enrollment: not always accomodated. New scheme this year makes it easier.

Keep up, send email to fa17@eecs.org to get enrolled in gradescope, etc.

Propositions:

Propositions: Statements that are true or false.

Propositions: Statements that are true or false. 3 > 2.

Propositions: Statements that are true or false. 3 > 2.

Propositional Forms.

Propositions: Statements that are true or false.

3 > 2.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Propositions: Statements that are true or false. 3 > 2.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

$$\neg P \lor Q$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

$$\neg P \lor Q \equiv$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

$$\neg P \lor Q \equiv P \implies Q.$$

$$\neg Q \Longrightarrow \neg P$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

$$\neg P \lor Q \equiv P \implies Q.$$

$$\neg Q \Longrightarrow \neg P \equiv$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

$$\neg P \lor Q \equiv P \implies Q.$$

$$\neg Q \Longrightarrow \neg P \equiv P \Longrightarrow Q.$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P \equiv P \Longrightarrow Q.$$

Predicates:

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P \equiv P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

$$\mathbf{Q} \longrightarrow \mathbf{T} \equiv \mathbf{T} \longrightarrow \mathbf{Q}.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

The milky way.

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

The milky way. Kidding.

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P \equiv P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

The milky way. Kidding. Just trying to keep everyone awake.

 \mathbb{N} ,

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P \equiv P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

$$\mathbb{N}, \mathbb{Z},$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

$$\mathbb{N}, \mathbb{Z}, \mathbb{R},$$

Propositions: Statements that are true or false.

$$3 > 2$$
.

Propositional Forms.

$$P \lor Q, P \land Q, \neg P, P \Longrightarrow Q$$

Truth Tables/Logical Equivalence.

$$\neg P \lor Q \equiv P \Longrightarrow Q.$$

$$\neg Q \Longrightarrow \neg P = P \Longrightarrow Q.$$

Predicates:

Statements with free variables whose values determine truth.

$$P(x) = 'x > 2.$$

Quantifiers:

$$\forall x \in \mathbb{N}, x > 2.$$

$$\exists x \in \mathbb{N}, x > 2.$$

Universe:

$$\mathbb{N}, \mathbb{Z}, \mathbb{R}, \dots$$

Back to: Wason's experiment:1 Theory:

Back to: Wason's experiment:1

Theory: "If a person travels to Chicago, he/she flies."

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

P(x) = "Person x went to Chicago."

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

P(x) = "Person x went to Chicago." Q(x) = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x)$

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) = False$$
.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

P(A) =False . Do we care about Q(A)?

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$? No.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False .

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

Q(B) =False . Do we care about P(B)? Yes.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$? Yes. $P(B) \implies Q(B)$

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?
Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So P(Bob) must be False.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.

So
$$P(Bob)$$
 must be False.

$$P(C) = \text{True}$$
.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$.

So P(Bob) must be False.

P(C) = True . Do we care about Q(C)?

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So
$$P(Bob)$$
 must be False.

$$P(C)$$
 = True . Do we care about $Q(C)$? Yes.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So
$$P(Bob)$$
 must be False.

$$P(C)$$
 = True . Do we care about $Q(C)$?
Yes. $P(C) \implies Q(C)$ means $Q(C)$ must be true.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So
$$P(Bob)$$
 must be False.

$$P(C) = \text{True}$$
. Do we care about $Q(C)$?

Yes. $P(C) \Longrightarrow Q(C)$ means Q(C) must be true.

$$Q(D) = \text{True}$$
.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So
$$P(Bob)$$
 must be False.

$$P(C)$$
 = True . Do we care about $Q(C)$?

Yes.
$$P(C) \Longrightarrow Q(C)$$
 means $Q(C)$ must be true.

$$Q(D) = \text{True}$$
. Do we care about $P(D)$?

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.

So
$$P(Bob)$$
 must be False.

$$P(C) = \text{True}$$
. Do we care about $Q(C)$?

Yes.
$$P(C) \Longrightarrow Q(C)$$
 means $Q(C)$ must be true.

$$Q(D)$$
 = True . Do we care about $P(D)$? No.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

Yes.
$$P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$$
.
So $P(Bob)$ must be False.

$$P(C) = \text{True}$$
. Do we care about $Q(C)$?

Yes. $P(C) \Longrightarrow Q(C)$ means Q(C) must be true.

$$Q(D) = \text{True}$$
. Do we care about $P(D)$?

No. $P(D) \Longrightarrow Q(D)$ holds whatever P(D) is when Q(D) is true.

Theory: "If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$P(x)$$
 = "Person x went to Chicago." $Q(x)$ = "Person x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}, P(x) \implies Q(x)$

$$P(A) =$$
False . Do we care about $Q(A)$?

No. $P(A) \implies Q(A)$, when P(A) is False, Q(A) can be anything.

$$Q(B) =$$
False . Do we care about $P(B)$?

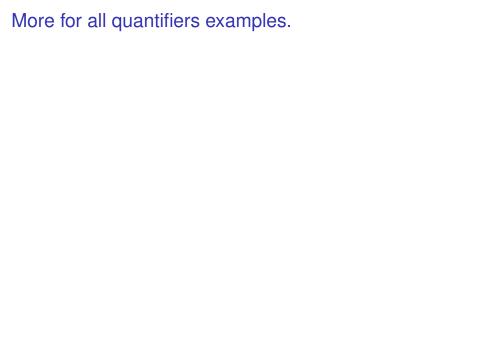
Yes. $P(B) \Longrightarrow Q(B) \equiv \neg Q(B) \Longrightarrow \neg P(B)$. So P(Bob) must be False.

$$P(C) = \text{True}$$
. Do we care about $Q(C)$?

Yes. $P(C) \Longrightarrow Q(C)$ means Q(C) must be true.

$$Q(D)$$
 = True . Do we care about $P(D)$?
No. $P(D) \Longrightarrow Q(D)$ holds whatever $P(D)$ is when $Q(D)$ is true.

Only have to turn over cards for Bob and Charlie.



$$(\forall x \in N) (2x > x)$$

$$(\forall x \in N) (2x > x)$$
 False

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5)$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert:

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

"doubling a number always makes it larger"

$$(\forall x \in N) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in N) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in N)(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

Note that we may omit universe if clear from context.

$$(\exists y \in N) \ (\forall x \in N)$$

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "the square of every natural number is a natural number."

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "the square of every natural number is a natural number."

$$(\forall x \in N)$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

▶ In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N)$$

In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$
 True

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in N) \ (\forall x \in N) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in N)(\exists y \in N) (y = x^2)$$
 True

Consider

$$\neg(\forall x \in S)(P(x)),$$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False, find x, where $\neg P(x)$.

Counterexample.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True:

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim!

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim! What we do in this course!

Consider

Consider

$$\neg(\exists x \in S)(P(x))$$

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that for all x in S, P(x) does not hold.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that for all x in S, P(x) does not hold.

That is,

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that for all x in S, P(x) does not hold.

That is,

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

Which Theorem?

Theorem: $(\forall n \in N) \neg ((\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n))$

Theorem: $(\forall n \in N) \neg ((\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n))$ Which Theorem?

Theorem: $(\forall n \in N) \neg ((\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Theorem: $(\forall n \in \mathbb{N}) \neg ((\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

Theorem: $(\forall n \in N) \neg ((\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

Theorem: $(\forall n \in N) \neg ((\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

Theorem: $(\forall n \in N) \neg ((\exists a, b, c \in N) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

Theorem: $(\forall n \in \mathbb{N}) \neg ((\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

Movie - "Nova: The Proof."

Theorem: $(\forall n \in \mathbb{N}) \neg ((\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ... (based in part on Ribet's Theorem)

Movie - "Nova: The Proof."

DeMorgan Restatement:

Theorem: $(\forall n \in \mathbb{N}) \neg ((\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n))$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ... (based in part on Ribet's Theorem)

Movie - "Nova: The Proof."

DeMorgan Restatement:

Theorem: $\neg(\exists n \in N) \ (\exists a, b, c \in N) \ (n \ge 3 \implies a^n + b^n = c^n)$

Propositions are statements that are true or false.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \neg .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems!

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff$$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$\neg \forall x \ P(x) \iff$$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \neg .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x)$$

A bit dry...

Propositions are statements that are true or false.

Proprositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

A bit dry...

Why?

From the langauge of Proofs...

From the langauge of Proofs...

to

From the langauge of Proofs...

to

Proofs.

Yaay!

And now:

Yaay!

And now: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

Integers closed under addition.

Integers closed under addition.

$$a, b \in Z \implies a + b \in Z$$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q=5,

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No!

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a, b \in Z \implies a + b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

Formally: $a|b \iff \exists q \in Z \text{ where } b = aq.$

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Theorem: For any $a,b,c \in \mathbb{Z}$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

Theorem: For any $a, b, c \in \mathbb{Z}$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq

Theorem: For any $a,b,c \in \mathbb{Z}$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq'

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

Theorem: For any $a,b,c \in \mathbb{Z}$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q')

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q')

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

(b-c)=a(q-q') and (q-q') is an integer so

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so a|(b-c)

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$ $b=aq$ and $c=aq'$ where $q,q'\in Z$ $b-c=aq-aq'=a(q-q')$ Done? $(b-c)=a(q-q')$ and $(q-q')$ is an integer so $a|(b-c)$

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$

$$b = aq \text{ and } c = aq' \text{ where } q, q' \in Z$$

$$b - c = aq - aq' = a(q - q') \text{ Done?}$$

$$(b - c) = a(q - q') \text{ and } (q - q') \text{ is an integer so}$$

$$a|(b - c)$$

Works for $\forall a, b, c$?

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$ $b=aq$ and $c=aq'$ where $q,q'\in Z$ $b-c=aq-aq'=a(q-q')$ Done? $(b-c)=a(q-q')$ and $(q-q')$ is an integer so $a|(b-c)$

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b - c = aq - aq' = a(q - q')$ Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so $a|(b-c)$

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Assume P.

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b - c = aq - aq' = a(q - q')$ Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so $a|(b-c)$

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$ Assume P.

. . .

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$
 $b = aq$ and $c = aq'$ where $q, q' \in Z$
 $b - c = aq - aq' = a(q - q')$ Done?

$$(b-c) = a(q-q')$$
 and $(q-q')$ is an integer so

$$a|(b-c)$$

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$.

Direct Proof Form:

Goal: $P \Longrightarrow Q$ Assume P.

. . .

Therefore Q.

Let D_3 be the 3 digit natural numbers.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is *n*,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n)
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n) Yes?
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n) Yes? No?
```

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof:

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|n.

n = 100a + 10b + c = 11k

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow 99a + 11b + (a - b + c) = 11k$

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b)
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

That is 11 alternating sum of digits.

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff Often works with arithmetic properties ...

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff Often works with arithmetic propertiesnot when multiplying by 0.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in \mathbb{N}', (11|\text{alt. sum of digits of } n) \iff (11|n)$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

$$n = 2k + 1$$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do?

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$...and prove $\neg P$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$...and prove $\neg P$.

and prove vi

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume ¬Q

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = 2k + 1 what do we know about d?
What to do? Is it even true?
 Hey, that rhymes ...and there is a pun ... colored blue.
Anyway, what to do?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d \mid n so we have
  n = qd
```

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k)$$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

 $d \mid n$ so we have

$$n = qd = q(2k) = 2(kq)$$

n is even.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = 2k + 1 what do we know about d?

What to do? Is it even true?

Hey, that rhymes ...and there is a pun ... colored blue.

Anyway, what to do?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

Proof: Assume $\neg Q$: d is even. d = 2k.

d|n so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even' $\neg Q =$ 'n is odd'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$

 $n^2 = 2I + 1$ where I is a natural number..

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove
$$\neg Q \Longrightarrow \neg P$$
: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

$$n^2 = 2I + 1$$
 where I is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove
$$\neg Q \Longrightarrow \neg P$$
: *n* is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

$$n^2 = 2I + 1$$
 where *I* is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$$

 $\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Must show:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$,

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots \implies \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv$$
False

$$\neg P \Longrightarrow False$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots \implies \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

$$\neg P \Longrightarrow False$$

Contrapositive:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv$$
False

$$\neg P \Longrightarrow False$$

Contrapositive: True $\implies P$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots \implies \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

$$\neg P \Longrightarrow \textit{False}$$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

$$\neg P \Longrightarrow False$$

Contrapositive: True \implies *P*. Theorem *P* is proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2=4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Proof:

▶ Assume finitely many primes: $p_1,...,p_k$.

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

Theorem: There are infinitely many primes.

Proof:

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

ightharpoonup q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\rightarrow p|x-q$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $ightharpoonup \Rightarrow p \leq x q$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $\Rightarrow p|x-q \implies p \le x-q=1.$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $ightharpoonup \Rightarrow p | x q \implies p \le x q = 1$. or p | 1.

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $ightharpoonup \Rightarrow p | x q \implies p \le x q = 1$. or p | 1.
- ▶ so $p \le 1$.

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $ightharpoonup \Rightarrow p | x q \implies p \le x q = 1$. or p | 1.
- ▶ so $p \le 1$. (Contradicts R.)

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $ightharpoonup \Rightarrow p | x q \implies p \le x q = 1$. or p | 1.
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- q cannot be one of the primes as it is larger than any p_i.
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides x q,
- $ightharpoonup \Rightarrow p | x q \implies p \le x q = 1$. or p | 1.
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Did we prove?

▶ "The product of the first *k* primes plus 1 is prime."

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- ► The chain of reasoning started with a false statement.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- ► The chain of reasoning started with a false statement.

$$ightharpoonup 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$$

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

- ightharpoonup 2 imes 3 imes 5 imes 7 imes 11 imes 13 + 1 = 30031 = 59 imes 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- ► The chain of reasoning started with a false statement.

- ightharpoonup 2 imes 3 imes 5 imes 7 imes 11 imes 13 + 1 = 30031 = 59 imes 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.
- ▶ Proof assumed no primes *in between* p_k and q.

And...

Happy Friday!

And...

Happy Friday!

Enjoy your weekend...

And...

Happy Friday! Enjoy your weekend... ...and take care.