Continuing Probability.

Wrap up: Probability Formalism.

Events, Conditional Probability, Independence, Bayes’ Rule
Probability Space: Formalism

Simplest physical model of a uniform probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[Pr[\text{blue}] = \frac{1}{8}. \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]

Note: Probabilities are restricted to rational numbers: \(\frac{N_k}{N} \).
Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

$$\Omega = \{1, 2, 3, \ldots, N\}, Pr[\omega] = p_\omega.$$
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it's wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each. This is not captured by ‘picking two outcomes.’
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: $\Omega; Pr[\omega] \in [0, 1]; \sum_\omega Pr[\omega] = 1.$
3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega.$
CS70: On to Calculation.

Events, Conditional Probability, Independence, Bayes’ Rule

1. Probability Basics Review
2. Events
3. Conditional Probability
4. Independence of Events
5. Bayes’ Rule
Setup:

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - **Sample Space:** Set of outcomes, Ω.
 \[Ω = \{HH, HT, TH, TT\} \]
 (Note: **Not** \[Ω = \{H, T\} \] with two picks!)
 - **Probability:** \(Pr[ω] \) for all \(ω \in Ω \).
 \[Pr[HH] = \cdots = Pr[TT] = 1/4 \]
 1. \(0 \leq Pr[ω] \leq 1 \).
 2. \(\sum_{ω ∈ Ω} Pr[ω] = 1 \).
Set notation review

Figure: Two events

Figure: Union (or)

Figure: Difference (A, not B)

Figure: Complement (not)

Figure: Intersection (and)

Figure: Symmetric difference (only one)
Probability of exactly one ‘heads’ in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one ‘heads’: HT, TH.

This leads to a definition!

Definition:

- An **event**, E, is a subset of outcomes: $E \subset \Omega$.
- The **probability of** E is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

![Sample Space Diagram](image)

Uniform Probability Space

$Pr[\omega] = \frac{1}{|\Omega|}$

$Pr[E] = \frac{|E|}{|\Omega|}$
Event: Example

Physical experiment

Probability model

\[\Omega = \{\text{Red, Green, Yellow, Blue}\} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]

\[E = \{\text{Red, Green}\} \Rightarrow Pr[E] = \frac{3 + 4}{10} = \frac{3}{10} + \frac{4}{10} = Pr[\text{Red}] + Pr[\text{Green}] \]
Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

Uniform probability space:
$Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$.

Event, E, “exactly one heads”: $\{TH, HT\}$.

$$Pr[E] = \sum_{\omega \in E} Pr[\omega] = \frac{|E|}{|\Omega|} = \frac{2}{4} = \frac{1}{2}.$$
Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega = \text{set of 20 fair coin tosses.}$
$\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; \quad |\Omega| = 2^{20}$.

What is more likely?

$\omega_1 := (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1), \text{ or}$
$\omega_2 := (1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0)$?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

What is more likely?

(E_1) Twenty Hs out of twenty, or
(E_2) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}$.

$|E_2| = \binom{20}{10} = 184,756$.
Probability of n heads in 100 coin tosses.

$\Omega = \{H, T\}^{100}$; $|\Omega| = 2^{100}$.

Event $E_n = \text{`n heads'}$; $|E_n| = \binom{100}{n}$

$p_n := Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$

Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.
Roll a red and a blue die.

\[
Pr[\text{Sum to 7}] = \frac{6}{36} \quad Pr[\text{Sum to 10}] = \frac{3}{36}
\]
Exactly 50 heads in 100 coin tosses.

Sample space: $\Omega = \text{set of 100 coin tosses} = \{H, T\}^{100}$.
$|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event $E =$ “100 coin tosses with exactly 50 heads”

$|E| = \binom{100}{50}$.

Choose 50 positions out of 100 to be heads.

$|E| = \binom{100}{50}$.

$$Pr[E] = \frac{\binom{100}{50}}{2^{100}}.$$
Calculation.
Stirling formula (for large n):

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$

$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n(2n/e)^{2n}}}{\left[\sqrt{2\pi n(n/e)^n}\right]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$

$$Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$
Exactly 50 heads in 100 coin tosses.

\[Pr[n \text{Hs out of } 2n] = \frac{\binom{2n}{n}}{2^{2n}} \]

0.08
Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events A_1, \ldots, A_n are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset$, $\forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.
Consequences of Additivity

Theorem

(a) \(\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B]; \)
 (inclusion-exclusion property)

(b) \(\Pr[A_1 \cup \cdots \cup A_n] \leq \Pr[A_1] + \cdots + \Pr[A_n]; \)
 (union bound)

(c) If \(A_1, \ldots A_N \) are a partition of \(\Omega \), i.e.,
 pairwise disjoint and \(\bigcup_{m=1}^{N} A_m = \Omega \), then
 \(\Pr[B] = \Pr[B \cap A_1] + \cdots + \Pr[B \cap A_N]. \)
 (law of total probability)

Proof:

(b) is obvious.

Proofs for (a) and (c)? Next...
Inclusion/Exclusion

\[Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B] \]

Another view. Any \(\omega \in A \cup B \) is in \(A \cap \bar{B}, A \cup B, \text{ or } \bar{A} \cap B \). So, add it up.
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$.

In “math”: $\omega \in B$ is in exactly one of $A_i \cap B$.

Adding up probability of them, get $Pr[\omega]$ in sum.

..Did I say...

Add it up.
Roll a Red and a Blue Die.

$E_1 = \text{`Red die shows 6'}$; $E_2 = \text{`Blue die shows 6'}$

$E_1 \cup E_2 = \text{`At least one die shows 6'}$

$Pr[E_1] = \frac{6}{36}, \hspace{0.5cm} Pr[E_2] = \frac{6}{36}, \hspace{0.5cm} Pr[E_1 \cup E_2] = \frac{11}{36}.$
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? \(\Omega = \{ HH, HT, TH, TT \} \); Uniform probability space. Event \(A = \) first flip is heads: \(A = \{ HH, HT \} \).

New sample space: \(A \); uniform still.

Event \(B = \) two heads.

The probability of two heads if the first flip is heads. \textbf{The probability of } \(B \) \textbf{ given } \(A \) is \(1/2 \).
A similar example.

Two coin flips. At least one of the flips is heads.
→ Probability of two heads?

Ω = \{HH, HT, TH, TT\}; uniform.
Event \(A = \) at least one flip is heads. \(A = \{HH, HT, TH\}\).

New sample space: \(A\); uniform still.

Event \(B = \) two heads.

The probability of two heads if at least one flip is heads. The probability of \(B\) given \(A\) is \(1/3\).
Conditional Probability: A non-uniform example

\[\Omega = \{\text{Red, Green, Yellow, Blue}\} \]

\[
Pr[\text{Red}|\text{Red or Green}] = \frac{3}{7} = \frac{Pr[\text{Red} \cap (\text{Red or Green})]}{Pr[\text{Red or Green}]}
\]
Another non-uniform example

Consider $\Omega = \{1, 2, \ldots, N\}$ with $Pr[n] = p_n$. Let $A = \{3, 4\}, B = \{1, 2, 3\}$.

$$Pr[A|B] = \frac{p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}.$$
Yet another non-uniform example

Consider $\Omega = \{1, 2, \ldots, N\}$ with $Pr[n] = p_n$.
Let $A = \{2, 3, 4\}, B = \{1, 2, 3\}$.

$$Pr[A|B] = \frac{p_2 + p_3}{p_1 + p_2 + p_3} = \frac{Pr[A \cap B]}{Pr[B]}.$$
Definition: The conditional probability of B given A is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$
More fun with conditional probability.

Toss a red and a blue die, sum is 4, What is probability that red is 1?

\[
Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{3}; \text{ versus } Pr[B] = 1/6.
\]

\(B\) is more likely given \(A\).
Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7, what is probability that red is 1?

\[
Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}; \text{ versus } Pr[B] = \frac{1}{6}.
\]

Observing \(A \) does not change your mind about the likelihood of \(B \).
Emptiness..

Suppose I toss 3 balls into 3 bins. $A =$“1st bin empty”; $B =$“2nd bin empty.” What is $Pr[A | B]$?

$\Omega = \{1, 2, 3\}^3$

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$

$Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$

$Pr[A | B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } Pr[A] = \frac{8}{27}$.

A is less likely given B: If second bin is empty the first is more likely to have balls in it.
Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black.
Pick one at random and place on the table. The upturned side is a Red. What is the probability that the other side is Black?
Can’t be the BB card, so...prob should be 0.5, right?

R: upturned card is Red; RB: the Red/Black card was selected.

Want $P(RB|R)$.

What’s wrong with the reasoning that leads to $\frac{1}{2}$?

\[
P(RB|R) = \frac{P(RB \cap R)}{P(R)}
\]

\[
= \frac{\frac{1}{3} \cdot 1}{\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot 0}
\]

\[
= \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}
\]

Once you are given R: it is twice as likely that the RR card was picked.
Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads”

B = “the 51st is heads”

\[Pr[B \mid A] \]?

\[A = \{HH\cdots HT, HH\cdots HH\} \]

\[B \cap A = \{HH\cdots HH\} \]

Uniform probability space.

\[Pr[B \mid A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}. \]

Same as \(Pr[B] \).

The likelihood of 51st heads does not depend on the previous flips.
Recall the definition:

\[Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} . \]

Hence,

\[Pr[A \cap B] = Pr[A] Pr[B|A] . \]

Consequently,

\[Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C] \]
\[= Pr[A \cap B] Pr[C|A \cap B] \]
\[= Pr[A] Pr[B|A] Pr[C|A \cap B] . \]
Theorem Product Rule
Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.
Assume the result is true for n. (It holds for $n = 2$.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}] = Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n]$$

$$= Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n],$$

so that the result holds for $n + 1$. \qed
Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.
Correlation

Event A: the person has lung cancer. Event B: the person is a heavy smoker. $\Pr[A|B] = 1.17 \times \Pr[A]$.

A second look.

Note that

$$\Pr[A|B] = 1.17 \times \Pr[A] \iff \frac{\Pr[A \cap B]}{\Pr[B]} = 1.17 \times \Pr[A]$$
$$\iff \Pr[A \cap B] = 1.17 \times \Pr[A]\Pr[B]$$
$$\iff \Pr[B|A] = 1.17 \times \Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$. Thus,

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Is your coin loaded?
Your coin is fair w.p. 1/2 or such that $\Pr[H] = 0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$A = \text{‘coin is fair’}, B = \text{‘outcome is heads’}$

We want to calculate $Pr[A|B]$.
We know $Pr[B|A] = 1/2, Pr[B|\bar{A}] = 0.6, Pr[A] = 1/2 = Pr[\bar{A}]$

Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$
$$= (1/2)(1/2) + (1/2)0.6 = 0.55.$$

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$
Is your coin loaded?

A picture:

Imagine 100 situations, among which
\[m := 100 \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \] are such that \(A \) and \(B \) occur and
\[n := 100 \left(\frac{1}{2} \right) \left(0.6 \right) \] are such that \(\bar{A} \) and \(B \) occur.

Thus, among the \(m + n \) situations where \(B \) occurred, there are \(m \) where \(A \) occurred.

Hence,

\[
Pr[A \mid B] = \frac{m}{m + n} = \frac{ \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) }{ \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + \left(\frac{1}{2} \right) 0.6 .}
\]
Independence

Definition: Two events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independent;
- When rolling two dice, $A =$ sum is 3 and $B =$ red die is 1 are not independent;
- When flipping coins, $A =$ coin 1 yields heads and $B =$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A =$ bin 1 is empty and $B =$ bin 2 is empty are not independent;
Independence and conditional probability

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \iff Pr[A \cap B] = Pr[A] Pr[B].$$
Bayes Rule

Another picture: We imagine that there are N possible causes A_1, \ldots, A_N.

Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for $n = 1, \ldots, N$.

Thus, among the $100 \sum_m p_m q_m$ situations where B occurred, there are $100p_nq_n$ where A_n occurred.

Hence,

$$Pr[A_n|B] = \frac{p_nq_n}{\sum_m p_m q_m}.$$
Why do you have a fever?

Using Bayes’ rule, we find

\[Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58 \]

\[Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8} \]

\[Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42 \]

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high fever.
Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information changes our opinions.
Thomas Bayes

Portrait used of Bayes in a 1936 book,[1] but it is doubtful whether the portrait is actually of him.[2] No earlier portrait or claimed portrait survives.

Born
c. 1701
London, England

Died
7 April 1761 (aged 59)
Tunbridge Wells, Kent, England

Residence
Tunbridge Wells, Kent, England

Nationality
English

Known for
Bayes' theorem

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Fig. 3. Joshua Bayes (1671–1746).
Testing for disease.

Let's watch TV!!
Random Experiment: Pick a random male.
Outcomes: \((test, disease)\)

\(A\) - prostate cancer.
\(B\) - positive PSA test.

- \(Pr[A] = 0.0016, (0.16 \% \text{ of the male population is affected.})\)
- \(Pr[B|A] = 0.80 \text{ (80\% chance of positive test with disease.)}\)
- \(Pr[B|\overline{A}] = 0.10 \text{ (10\% chance of positive test without disease.)}\)

Positive PSA test \((B)\). Do I have disease?

\(Pr[A|B]???\)
Bayes Rule.

Using Bayes’ rule, we find

\[
P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013.
\]

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.
Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- **Conditional Probability:**
 \[\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} \]

- **Independence:** \(\Pr[A \cap B] = \Pr[A] \Pr[B] \).

- **Bayes’ Rule:**
 \[\Pr[A_n|B] = \frac{\Pr[A_n] \Pr[B|A_n]}{\sum_m \Pr[A_m] \Pr[B|A_m]} . \]

 \(\Pr[A_n|B] = \) posterior probability; \(\Pr[A_n] = \) prior probability.

- **All these are possible:**
 \(\Pr[A|B] < \Pr[A] \); \(\Pr[A|B] > \Pr[A] \); \(\Pr[A|B] = \Pr[A] \).