Continuing Probability.

Wrap up: Probability Formalism.

Events, Conditional Probability, Independence, Bayes' Rule

Probability Space: Formalism

Simplest physical model of a uniform probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

 $\Omega = \{$ white, red, yellow, grey, purple, blue, maroon, green $\}$ Pr[blue $] = \frac{1}{8}.$

Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

Note: Probabilities are restricted to rational numbers: $\frac{N_k}{N}$.

Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_{ω} .

$$\Omega = \{1, 2, 3, \ldots, N\}, \Pr[\omega] = \rho_{\omega}.$$

An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each. This is not captured by 'picking two outcomes.'

Lecture 15: Summary

Modeling Uncertainty: Probability Space

- 1. Random Experiment
- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.

CS70: On to Calculation.

Events, Conditional Probability, Independence, Bayes' Rule

- 1. Probability Basics Review
- 2. Events
- 3. Conditional Probability
- 4. Independence of Events
- 5. Bayes' Rule

Probability Basics Review

Setup:

- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ▶ **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$

1.
$$0 \le Pr[\omega] \le 1$$
.
2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Set notation review

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

This leads to a definition! **Definition**:

- An event, *E*, is a subset of outcomes: $E \subset \Omega$.
- The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.

Event: Example

Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}$.

Uniform probability space: $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}.$

Event, *E*, "exactly one heads": $\{TH, HT\}$.

Example: 20 coin tosses.

20 coin tosses

Sample space: $\Omega = \text{set of } 20 \text{ fair coin tosses.}$ $\Omega = \{T, H\}^{20} \equiv \{0, 1\}^{20}; |\Omega| = 2^{20}.$

What is more likely?

Answer: Both are equally likely: $Pr[\omega_1] = Pr[\omega_2] = \frac{1}{|\Omega|}$.

- What is more likely?
 - (E1) Twenty Hs out of twenty, or
 - (E₂) Ten Hs out of twenty?

Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs; only one with twenty Hs. $\Rightarrow Pr[E_1] = \frac{1}{|\Omega|} \ll Pr[E_2] = \frac{|E_2|}{|\Omega|}$.

$$|E_2| = \binom{20}{10} = 184,756.$$

Probability of *n* heads in 100 coin tosses.

$$\Omega = \{H, T\}^{100}; \ |\Omega| = 2^{100}.$$

Event $E_n = n$ heads'; $|E_n| = \binom{100}{n}$ $p_n := \Pr[E_n] = \frac{|E_n|}{|\Omega|} = \frac{\binom{100}{n}}{2^{100}}$ Observe:

- Concentration around mean: Law of Large Numbers;
- Bell-shape: Central Limit Theorem.

Roll a red and a blue die.

Exactly 50 heads in 100 coin tosses.

Sample space: Ω = set of 100 coin tosses = {H, T}¹⁰⁰. $|\Omega| = 2 \times 2 \times \cdots \times 2 = 2^{100}$.

Uniform probability space: $Pr[\omega] = \frac{1}{2^{100}}$.

Event E = "100 coin tosses with exactly 50 heads"

|E|? Choose 50 positions out of 100 to be heads. $|E| = \binom{100}{50}.$

$$\Pr[E] = rac{\binom{100}{50}}{2^{100}}.$$

Calculation.

Stirling formula (for large *n*):

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n.$$
$$\binom{2n}{n} \approx \frac{\sqrt{4\pi n} (2n/e)^{2n}}{[\sqrt{2\pi n} (n/e)^n]^2} \approx \frac{4^n}{\sqrt{\pi n}}.$$
$$\Pr[E] = \frac{|E|}{|\Omega|} = \frac{|E|}{2^{2n}} = \frac{1}{\sqrt{\pi n}} = \frac{1}{\sqrt{50\pi}} \approx .08.$$

Exactly 50 heads in 100 coin tosses.

Probability is Additive

Theorem

(a) If events A and B are disjoint, i.e., $A \cap B = \emptyset$, then

$$Pr[A \cup B] = Pr[A] + Pr[B].$$

(b) If events A_1, \ldots, A_n are pairwise disjoint, i.e., $A_k \cap A_m = \emptyset, \forall k \neq m$, then

$$Pr[A_1 \cup \cdots \cup A_n] = Pr[A_1] + \cdots + Pr[A_n].$$

Proof:

Obvious.

Consequences of Additivity

Theorem

(a) $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$ (inclusion-exclusion property) (b) $Pr[A_1 \cup \dots \cup A_n] \leq Pr[A_1] + \dots + Pr[A_n];$ (union bound) (c) If $A_1, \dots A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then $Pr[B] = Pr[B \cap A_1] + \dots + Pr[B \cap A_N].$ (law of total probability)

Proof:

(b) is obvious.

Proofs for (a) and (c)? Next...

Inclusion/Exclusion

$$Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B]$$

Another view. Any $\omega \in A \cup B$ is in $A \cap \overline{B}$, $A \cup B$, or $\overline{A} \cap B$. So, add it up.

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. In "math": $\omega \in B$ is in exactly one of $A_i \cap B$.

Adding up probability of them, get $Pr[\omega]$ in sum.

..Did I say...

Add it up.

Roll a Red and a Blue Die.

 $|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|$

 $E_1 = \text{`Red die shows 6'; } E_2 = \text{`Blue die shows 6'}$ $E_1 \cup E_2 = \text{`At least one die shows 6'}$ $Pr[E_1] = \frac{6}{36}, Pr[E_2] = \frac{6}{36}, Pr[E_1 \cup E_2] = \frac{11}{36}.$

Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads. The probability of *B* given *A* is 1/2.

A similar example.

Two coin flips. At least one of the flips is heads.

 \rightarrow Probability of two heads?

 $\Omega = \{HH, HT, TH, TT\}; \text{ uniform.}$

Event A = at least one flip is heads. $A = \{HH, HT, TH\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if at least one flip is heads. The probability of *B* given *A* is 1/3.

Conditional Probability: A non-uniform example

 $\Omega = \{$ Red, Green, Yellow, Blue $\}$

 $Pr[\text{Red}|\text{Red or Green}] = \frac{3}{7} = \frac{Pr[\text{Red} \cap (\text{Red or Green})]}{Pr[\text{Red or Green}]}$

Another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{3, 4\}, B = \{1, 2, 3\}.$

Yet another non-uniform example

Consider $\Omega = \{1, 2, ..., N\}$ with $Pr[n] = p_n$. Let $A = \{2, 3, 4\}, B = \{1, 2, 3\}.$

Conditional Probability.

Definition: The conditional probability of B given A is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

More fun with conditional probability.

Toss a red and a blue die, sum is 4, What is probability that red is 1?

 $Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{3}$; versus Pr[B] = 1/6.

B is more likely given *A*.

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7, what is probability that red is 1?

 $Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}$; versus $Pr[B] = \frac{1}{6}$. Observing *A* does not change your mind about the likelihood of *B*.

Emptiness..

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $\begin{aligned} & \Pr[B] = \Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = \Pr[\{1, 3\}^3] = \frac{8}{27} \\ & \Pr[A \cap B] = \Pr[(3, 3, 3)] = \frac{1}{27} \\ & \Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } \Pr[A] = \frac{8}{27}. \end{aligned}$

A is less likely given *B*: If second bin is empty the first is more likely to have balls in it.

Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black. Pick one at random and place on the table. The upturned side is a Red. What is the probability that the other side is Black? Can't be the BB card, so...prob should be 0.5, right? *R*: upturned card is Red; *RB*: the Red/Black card was selected. Want P(RB|R).

What's wrong with the reasoning that leads to $\frac{1}{2}$?

$$P(RB|R) = \frac{P(RB \cap R)}{P(R)}$$
$$= \frac{\frac{1}{3}\frac{1}{2}}{\frac{1}{3}(1) + \frac{1}{3}\frac{1}{2} + \frac{1}{3}(0)}$$
$$= \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

Once you are given R: it is twice as likely that the RR card was picked.

Gambler's fallacy.

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$ $B \cap A = \{HH \cdots HH\}$

Uniform probability space.

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$$

Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

Product Rule

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

$$= Pr[A \cap B]Pr[C|A \cap B]$$

$$= Pr[A]Pr[B|A]Pr[C|A \cap B].$$

Product Rule

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction. Assume the result is true for *n*. (It holds for n = 2.) Then,

 $\begin{aligned} &Pr[A_1 \cap \dots \cap A_n \cap A_{n+1}] \\ &= Pr[A_1 \cap \dots \cap A_n]Pr[A_{n+1}|A_1 \cap \dots \cap A_n] \\ &= Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \dots \cap A_{n-1}]Pr[A_{n+1}|A_1 \cap \dots \cap A_n], \end{aligned}$

so that the result holds for n+1.

Correlation

An example. Random experiment: Pick a person at random. Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.

Correlation

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \quad \Leftrightarrow \quad \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow \quad Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow \quad Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?

Causality vs. Correlation

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. Thus,

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \dots + Pr[A_N]Pr[B|A_N].$$

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

 $Pr[B] = Pr[A_1]Pr[B|A_1] + \dots + Pr[A_N]Pr[B|A_N].$

Is your coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\overline{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\overline{A}]$ Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Is your coin loaded?

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that *A* and *B* occur and n := 100(1/2)(0.6) are such that \overline{A} and *B* occur.

Thus, among the m+n situations where *B* occurred, there are *m* where *A* occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$

Independence

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

Examples:

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent;

Independence and conditional probability

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that $Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$

Bayes Rule

Another picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .

Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

Thus, among the $100\sum_{m} p_m q_m$ situations where *B* occurred, there are $100p_n q_n$ where A_n occurred.

Hence,

$$Pr[A_n|B] = rac{p_n q_n}{\sum_m p_m q_m}.$$

Why do you have a fever?

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Testing for disease.

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- Pr[B|A] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Bayes Rule.

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone? Impotence...

Incontinence..

Death.

Summary

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability .$

All these are possible: Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].