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» The random experiment selects one and only one outcome
in Q.
» For instance, when we flip a fair coin twice
» Q={HH,TH,HT,TT}
» The experiment selects one of the elements of Q.
» In this case, its wrong to think that Q = {H, T} and that the
experiment selects two outcomes.
» Why? Because this would not describe how the two coin
flips are related to each other.
» For instance, say we glue the coins side-by-side so that
they face up the same way. Then one gets HH or TT with

probability 50% each. This is not captured by ‘picking two
outcomes.
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4 _

0

etc.

= Pr[Red]+ Pr[Green].
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Example: 20 coin tosses.
20 coin tosses

Sample space: Q = set of 20 fair coin tosses.

Q={T,H}?°={0,1}20; |Q| =220,

» What is more likely?

o =01,1,1,1,1,1,1,1,1,1.1, 1,

» w»:=(1,0,1,1,0,0,0,1,0,1,0,1,1,0,

Answer: Both are equally likely: Pr{mi] =

» What is more likely?
(E1) Twenty Hs out of twenty, or
(E2) Ten Hs out of twenty?
Answer: Ten Hs out of twenty.

Why? There are many sequences of 20 tosses with ten Hs;
only one with twenty Hs. = Pr[Eq] = by < Pr{Ep] = II%\l

1,1,1,1,1,1,
1,1 1,1,

20
|Ep| = <10> = 184,756.
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Probability of n heads in 100 coin tosses.

Q= {H, T}%; |Q| = 2100,

] Event E, = ‘n heads’; | En| = ('2)
007 J | 100
[ |En|

006 o || pn—Pr[E]:T:(Q{BO)
Observe:
[ » Concentration around mean:
. Law of Large Numbers;
oo [\ » Bell-shape: Central Limit
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Die 2 Q
A T

6 o-1-

5 -1- =L Sum to 107
4 -4

3 -1-

92 .. o .‘Smn to T’
11 [l

: > Die |
1 2 3 4 5 6
Pr[Sum to 7] = 0 Pr[Sum to 10] = —
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Sample space: Q = set of 100 coin tosses = {H, T}1%0.
IQ=2x2x---x2=210

Uniform probability space: Pr{w] = zﬂw

Event E = “100 coin tosses with exactly 50 heads”
|E[?

Choose 50 positions out of 100 to be heads.

|E|= (15000)-

Pr[E] — (15000)

2100 °
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n
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Theorem

(a) If events A and B are disjoint, i.e., AN B =0, then
Pr[AuB] = Pr[A] + Pr[B].
(b) If events Aq,..., A, are pairwise disjoint,
i.e., AxNAm=0,Yk # m, then
PrlAjU---UAp] = Pr[A{]+ -+ Pr[Ag].

Proof:

Obvious.
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(a) Pr[AUB] = Pr[A]+ Pr[B] — Pr[An B;
(inclusion-exclusion property)
(b) Pr[A1U---UAp] < Pr[A{]+ -+ Pr[Ag];
(union bound)
(c) If Aq,... Ay are a partition of Q, i.e.,
pairwise disjoint and UN_. Ay, = Q, then
Pr(B] = Pr[BNA{]+---+ Pr[BN Ap].
(law of total probability)
Proof:
(b) is obvious.
Proofs for (a) and (c)? Next...
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Inclusion/Exclusion

Pr{AUB] = Pr{A|+ Pr[B] — Pr{AN B

A B
PriAl=z+vy
PrBl=y+z
PrlANB] =y

PrlAUB]|=z+y+ 2

ANB

Another view. Any o € AUBis in ANB, AUB, or AnB. So, add
it up.
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Assume that 2 is the union of the disjoint sets A, ..., An.

Q

Then,
Pr(B] = Pr[AyNB]+---+ Pr[AyN BJ.

Indeed, B is the union of the disjoint sets A,NBforn=1,...

In “math”: @ € B is in exactly one of A;N B.
Adding up probability of them, get Pr{w] in sum.
..Did | say...

Add it up.
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Die 2 By 0
6 o006 660
Lo 0-0-0--0 ]
660000
{-{19-0-0-0-0 o]

. — » Die |
1 2 3 4 5 6
|E\ U Ey| = |Ey| + | Ey| — |Ey N By
E; = 'Red die shows 6’; E, = ‘Blue die shows 6’

E{ U E> = ‘At least one die shows 6’
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Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
Q={HH,HT,TH, TT}; Uniform probability space.
Event A = first flip is heads: A= {HH,HT}.

€} : uniform

New sample space: A; uniform still.

TN
/ ®HH \

[ : A uniform
\ eHT /

Event B = two heads.

The probability of two heads if the first flip is heads.
The probability of B given Ais 1/2.
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A similar example.

Two coin flips. At least one of the flips is heads.
— Probability of two heads?

Q={HH,HT,TH, TT}; uniform.
Event A= at least one flip is heads. A= {HH,HT, TH}.

€ : uniform

New sample space: A; uniform still.

N
/ @TH @HH™
./ \.
( | A : uniform
\ )

\. ouT /
N~

Event B = two heads.

The probability of two heads if at least one flip is heads.
The probability of B given Ais 1/3.
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Pr{w]
® Red 3/10
® Green 4/10
° 2/10
® Blue 110
Physical experiment Probability model

Q = {Red, Green, Yellow, Blue}

3 Pr[Redn(Red or Green
Pr(Red|Red or Green] = - = [ Pr[Re(d or Green] :
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Consider Q ={1,2,...,N} with Pr[n] = pp.
Let A={2,3,4},B={1,2,3}.

PriaB| — _P2tPs__ PrIANE]

pi+p2+ps  Pr(B
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Toss a red and a blue die, sum is 4,
What is probability that red is 1?

{1 : Uniform

Die 2 B ‘red die is 1’
'
i |l'elo 0 0 00 Q=1{1,....6}°
R SR A={(1,3),(2,2),(3, 1)}
1 |l®@0 0 0 0 0 _ )
RS B={(1,1),...,(1,6)}
3 g0 0 0 0 0 '
p AL 2.
’ :’:{‘O 0091 A= sumisd
1 908 O 0 O
== Die 1
1 4 3 | 5 4]

Pr(B|A] = B3 = 1: versus Pr[B] =1/6.

B is more likely given A.
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Toss a red and a blue die, sum is 7,
what is probability that red is 1?

€2 : Uniform

Die 2 B ‘red die is 1’
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I
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Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7,
what is probability that red is 1?

€2 : Uniform

Die 2 B ‘red die is 1’
AT
6 {1e0 0000 Q={1,...,6}>
I
RIS A={(1,6),...,(6,1)}
4 :..O“.‘\O o0 ; i "y
TR B={(11),...,(1,6)}
t {leo 0.0 0 |
2 i.:O o @“f\\‘?__ A = ‘sumis 7°
1 {lelc 00 O @
S= : Die 1

2 3 5 [}

Pr[B|A] = ‘B|2‘A‘ = &; versus Pr[B] = {.

Observing A does not change your mind about the likelihood of B.
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Emptiness..

Suppose | toss 3 balls into 3 bins.
A ="1st bin empty”; B =“2nd bin empty.” What is Pr[A|B]?

0={1,23}"
eoo | - |
: ® . e o ||e
' @ E e © E L 2N
32,3 b (LL2) b (3,2,2)
w = (bin of red ball, bin of blue ball, )

Pr([B] = Pr[{(a,b,c) | a,b,c € {1,3}] = Pr[{1,3}°] = &
PrlAnB] = Pr[(3,3,3)] = 5

PriA|B) = Za = G5 =1/8; vs. Pr{A] = &

A s less likely given B: If second bin is empty the first is more
likely to have balls in it.




Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black.

Pick one at random and place on the table. The upturned side is a
Red. What is the probability that the other side is Black?

Can't be the BB card, so...prob should be 0.5, right?

R: upturned card is Red; RB: the Red/Black card was selected.
Want P(RB|R).

What's wrong with the reasoning that leads to %?

P(RBIR) — P(RBNR)

Once you are given R: it is twice as likely that the RR card was
picked.
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Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads
B = “the 51st is heads”
Pr[B|A] ?

A={HH---HT ,HH--- HH}
BNA={HH - HH}

Uniform probability space.
PriBlA] = B = 5.
Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

”
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Recall the definition:
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Pr[B|A] = “PrAl
Hence,
Pr[ANB] = Pr[A]Pr[B|A].
Consequently,

PrlAnBNnC] = Pr[(AnB)NC]
= Pr[AnB]Pr[C|ANB|
= Pr[A|Pr[B|AlPr[C|ANB].
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Theorem Product Rule
Let A{,As,..., A, be events. Then

PI’[A1 ﬂ“‘ﬂAn] = PF[A1]PI’[A2‘A1]PF[A,7|A1 ﬂ-~~ﬂAn_1].

Proof: By induction.
Assume the result is true for n. (It holds for n=2.) Then,

PI’[A1 ﬁ"'mAnmAn+1]
= Pr[A1N---NAnPr{An1|A1N---NAJ]
= PF[A1]PF[A2|A1]PI’[An|A1 ﬂ---ﬂAn,1]Pl’[An+1 |A1 ﬂ“-ﬂAn],

so that the result holds for n+1. O
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Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr[A|B] =1.17 x Pr[A].

A second look.

Note that
Prl[ANB|
Pr(B]
< Pr[AnB] =1.17 x Pr[A]Pr[B]
< Pr[B|A|=1.17 x Pr[B].

Pr{A|B] = 1.17 x Pr[A] =1.17 x Pr[A]

Conclusion:

» Lung cancer increases the probability of smoking by 17%.
» Lung cancer causes smoking. Really?
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Causality vs. Correlation
Events A and B are positively correlated if

Pr[AnB] > Pr[A]Pr|B].
(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A
causes B or that B causes A.

Other examples:

» Tesla owners are more likely to be rich. That does not
mean that poor people should buy a Tesla to get rich.

» People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will
improve your career.

» Rabbits eat more carrots and do not wear glasses. Are
carrots good for eyesight?
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Total probability

Assume that Q is the union of the disjoint sets Aq,..., An.

Q

Then,
Pr(B] = Pr[AyNB]+---+ Pr[AyN BJ.

Indeed, B is the union of the disjoint sets A,NBforn=1,...

Thus,

Pr(B] = Pr[A|Pr[B|A:] + - -+ Pr[An]Pr[B|Aw].



Total probability

Assume that Q is the union of the disjoint sets Ay, ...

Prior Conditional
probabilities probabilities
Ag -

""‘--H.\_
o ‘ _» B
:9 = —471 _Q: ”
Pr[A, : Y
?[ u] AN I’I[B|1,,]
Partition
of

SAN.

Pr[B] = Pr[A]Pr[B|A{] + -+ Pr[An] Pr[B|An].



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair’,



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:

A= ‘coin is fair’, B= ‘outcome is heads’



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’

We want to calculate P[A|B].



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[BJA] =



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] =



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6,



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] =



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]
Now,

Pr[B] = Prl[AnB]+Pr[AnB]=



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]
Now,

Pr[B] = Pr[AnB]+ Pr[AnB] = Pr[A|Pr[B|A]+ Pr[A]Pr[B|A]



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
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We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]
Now,

Pr(B]

Pr[An B] + Pr[An B] = Pr[A|Pr[B|A] + Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]
Now,

Pr[B] = Pr[AnB]+ Pr[AnB]= Pr[A|Pr[B|A]+ Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.
Thus,
priag) = IAPABA ____(/2I0/2) .45

Pr[B]  (1/2)(1/2)+(1/2)0.6
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Is your coin loaded?

fair coin

A picture:
A
1/2 N‘Q
O B heads
1/2 0.6
A

loaded coin

Imagine 100 situations, among which
m:=100(1/2)(1/2) are such that A and B occur and
n:=100(1/2)(0.6) are such that A and B occur.

Thus, among the m+ n situations where B occurred, there are
m where A occurred.

Hence,

m (1/2)(1/2)
Al = o = A/2)(1/2)+ (1/2)0.6°
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Definition: Two events A and B are independent if

Pr[AnB] = Pr[A]Pr|B].

Examples:
» When rolling two dice, A=sumis 7 and B=red die is 1
are independent;

» When rolling two dice, A= sum is 3 and B =red die is 1
are not independent;

» When flipping coins, A= coin 1 yields heads and B = coin
2 yields tails are independent;

» When throwing 3 balls into 3 bins, A= bin 1 is empty and
B = bin 2 is empty are not independent;
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Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed: Pr[A|B] = P;[Agf], so that

PrlAn B]

PrAIB] = PriAl & —p g

= Pr[A] < Pr[AnB] = Pr[A|Pr[B].
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Another picture: We imagine that there are N possible causes

Ai,..., An.
Ay

pn = Pr[A,)

LA
i g n= Pr[B|A,]

CA Ay, ..., Ay disjoint

AN }-‘lJU'-‘Ux‘-‘lg\r =0

Pn

PN

Imagine 100 situations, among which 100p,q, are such that A,

and B occur, forn=1,... N.
Thus, among the 100Y,,, pmgm Situations where B occurred,

there are 100p,qn where A, occurred.

Hence,
PnQn

Pl Bl = & oma
m
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Using Bayes’ rule, we find
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Pr[Flu[High Fever] = ~0.
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Why do you have a fever?

Prior Conditional

probabilities probabilities
0.80
Fln \

hes TR 37

Ebola High Fever
/l.l()
Other

0.15x0.80

Using Bayes’ rule, we find

Pr{Flu|High Fever] = ~0.
rIFlulHigh Fever] = G 5 < 0.801 10 5x 1+085x0.1 = 028
-8
PrlEbola|High Fever] = 107 1 ~5x10°8
0.15x0.80 + 108 x 1+0.85 x 0.1
Pr[Other|High Fever] = 0.8501 ~0.42

0.15x0.80+10"8 x 1+0.85x 0.1

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

[Environment)]
Priors:

Pr[A,]
Observe B —»

Posteriors:

Bayes’ Rule Pr[A,|B]

Conditional:
Pr[B|A,]
[Model of system]

Bayes’ Rule is the canonical example of how information
changes our opinions.



Thomas Bayes

Source: Wikipedia.

Thomas Bayes

Mo earlier portrait or claimed portrait survives.

Born ¢ 1701
London, England
Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England
Residence Tunbridge Wells, Kent, England
Nationality English
Known for Bayes' theorem




Thomas Bayes

FiG. 3. Joshua Bayes (16711746 ). Thomas Bayes?

A Bayesian picture of Thomas Bayes.
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Random Experiment: Pick a random male.
Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

» Pr[A] =0.0016, (.16 % of the male population is affected.)

» Pr[B|A] =0.80 (80% chance of positive test with disease.)

» Pr[B|A] = 0.10 (10% chance of positive test without
disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)



Testing for disease.

Let’s watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.
» Pr[A] =0.0016, (.16 % of the male population is affected.)
» Pr[B|A] =0.80 (80% chance of positive test with disease.)
» Pr[B|A] =0.10 (10% chance of positive test without

disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do | have disease?



Testing for disease.

Let’s watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.
» Pr[A] =0.0016, (.16 % of the male population is affected.)
» Pr[B|A] =0.80 (80% chance of positive test with disease.)
» Pr[B|A] =0.10 (10% chance of positive test without

disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do | have disease?

PriA|B|???



Bayes Rule.

0.0016 A 080
B

A /[:.10

0.9984



Bayes Rule.

0.0016 A \() 0

/ ).10

0. ‘J(}84

Using Bayes’ rule, we find



Bayes Rule.

{},(){}l{i./ A 080

o p

~ «
0.9984> A70.10
Using Bayes’ rule, we find

PA|B] = 0.0016 x 0.80

0.0016 x 0.80+0.9984 x 0.10



Bayes Rule.

{},(){}l{i./ A 080

o p

~ ,’
- -
0.9984 % A 7010

Using Bayes’ rule, we find

0.0016 x 0.80
P[A|B] = =.013.
4Bl 0.0016 x 0.80+0.9984 x 0.10 013




Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
ol B

p
- -
0.0984 * A 7010

Using Bayes’ rule, we find

0.0016 x 0.80
PIAB] 0.0016 x 0.80+0.9984 x 0.10 013

A 1.3% chance of prostate cancer with a positive PSA test.



Bayes Rule.

{}.(){}l{ﬂiﬂ. A (080
ol B

0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80
P[A|B] = =.013.
4Bl 0.0016 x 0.80+0.9984 x 0.10 013

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?



Bayes Rule.

U.()Ul[ﬂiﬂ. A (080
o B

0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80
PIAB] 0.0016 x 0.80+0.9984 x 0.10 013

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?
Impotence...



Bayes Rule.

U.()Ul[ﬂiﬂ. A (080
o B

0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80
PIAB] 0.0016 x 0.80+0.9984 x 0.10 013

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...

Incontinence..



Bayes Rule.

U.()Ul[ﬂiﬂ. A (080
o B

0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80
PIAB] 0.0016 x 0.80+0.9984 x 0.10 013

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...

Incontinence..

Death.
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Pr[An|B] = posterior probability; Pr[An] = prior probability .

» All these are possible:
Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].



