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Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
Q={HH,HT,TH, TT}; Uniform probability space.
Event A = first flip is heads: A= {HH,HT}.

€} : uniform

New sample space: A; uniform still.

TN
/ ®HH \

[ : A uniform
\ eHT /

Event B = two heads.

The probability of two heads if the first flip is heads.
The probability of B given Ais 1/2.



Conditional Probability.

Definition: The conditional probability of B given A is

PriAn B]

Pr[B|A] = “PriAl
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Emptiness..

Suppose | toss 3 balls into 3 bins.
A ="1st bin empty”; B =“2nd bin empty.” What is Pr[A|B]?

0={1,23}"
eoo | - |
: ® . e o ||e
' @ E e © E L 2N
32,3 b (LL2) b (3,2,2)
w = (bin of red ball, bin of blue ball, )

Pr([B] = Pr[{(a,b,c) | a,b,c € {1,3}] = Pr[{1,3}°] = &
PrlAnB] = Pr[(3,3,3)] = 5

PriA|B) = Za = G50 =1/8; vs. Pr{Al = %,

A s less likely given B: If second bin is empty the first is more
likely to have balls in it.




Conditional Probability

Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black.

Pick one at random and place on the table. The upturned side is a
Red. What is the probability that the other side is Black?

Can't be the BB card, so...prob should be 0.5, right?

R: upturned card is Red; RB: the Red/Black card was selected.
Want P(RB|R).

What's wrong with the reasoning that leads to %?

P(RBIR) — P(RBNR)

Once you are given R: it is twice as likely that the RR card was
picked.
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Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads
B = “the 51st is heads”
Pr[B|A] ?

A={HH---HT ,HH--- HH}
BNA={HH - HH}

Uniform probability space.
PriBlA] = B = 5.
Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

”
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Theorem Product Rule
Let A{,As,..., A, be events. Then

PI’[A1 ﬂ“‘ﬂAn] = PF[A1]PI’[A2‘A1]PF[A,7|A1 ﬂ-~~ﬂAn_1].

Proof: By induction.
Assume the result is true for n. (It holds for n=2.) Then,

PI’[A1 ﬁ"'mAnmAn+1]
= Pr[A1N---NAnPr{An1|A1N---NAJ]
= PF[A1]PF[A2|A1]PI’[An|A1 ﬂ---ﬂAn,1]Pl’[An+1 |A1 ﬂ“-ﬂAn],

so that the result holds for n+1. O
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Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr[A|B] =1.17 x Pr[A].

A second look.

Note that
Prl[ANB|
Pr(B]
< Pr[AnB] =1.17 x Pr[A]Pr[B]
< Pr[B|A|=1.17 x Pr[B].

Pr{A|B] = 1.17 x Pr[A] =1.17 x Pr[A]

Conclusion:

» Lung cancer increases the probability of smoking by 17%.
» Lung cancer causes smoking. Really?
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Causality vs. Correlation
Events A and B are positively correlated if

Pr[AnB] > Pr[A]Pr|B].
(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A
causes B or that B causes A.

Other examples:

» Tesla owners are more likely to be rich. That does not
mean that poor people should buy a Tesla to get rich.

» People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will
improve your career.

» Rabbits eat more carrots and do not wear glasses. Are
carrots good for eyesight?
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Total probability

Assume that Q is the union of the disjoint sets Aq,..., An.

Q

Then,
Pr(B] = Pr[AyNB]+---+ Pr[AyN BJ.

Indeed, B is the union of the disjoint sets A,NBforn=1,...

Thus,

Pr(B] = Pr[A|Pr[B|A:] + - -+ Pr[An]Pr[B|Aw].



Total probability

Assume that Q is the union of the disjoint sets Ay, ...

Prior Conditional
probabilities probabilities
Ag -

""‘--H.\_
o ‘ _» B
:9 = —471 _Q: ”
Pr[A, : Y
?[ u] AN I’I[B|1,,]
Partition
of

SAN.

Pr[B] = Pr[A]Pr[B|A{] + -+ Pr[An] Pr[B|An].
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You flip your coin and it yields heads.
What is the probability that it is fair?
Analysis:
A= ‘coin is fair’, B= ‘outcome is heads’
We want to calculate P[A|B].
We know P[B|A] = 1/2, P[B|A] = 0.6, Pr[A] = 1/2 = Pr[A]
Now,

Pr[B] = Pr[AnB]+ Pr[AnB]= Pr[A|Pr[B|A]+ Pr[A|Pr[B|A]
(1/2)(1/2)+(1/2)0.6 = 0.55.
Thus,
priag) = IAPABA ____(/2I0/2) .45

Pr[B]  (1/2)(1/2)+(1/2)0.6
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Is your coin loaded?

fair coin

A picture:
A
1/2 N‘Q
O B heads
1/2 0.6
A

loaded coin

Imagine 100 situations, among which
m:=100(1/2)(1/2) are such that A and B occur and
n:=100(1/2)(0.6) are such that A and B occur.

Thus, among the m+ n situations where B occurred, there are
m where A occurred.

Hence,

m (1/2)(1/2)
Al = o = A/2)(1/2)+ (1/2)0.6°
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Definition: Two events A and B are independent if

Pr[AnB] = Pr[A]Pr|B].

Examples:
» When rolling two dice, A=sumis 7 and B=red die is 1
are independent;

» When rolling two dice, A= sum is 3 and B =red die is 1
are not independent;

» When flipping coins, A= coin 1 yields heads and B = coin
2 yields tails are independent;

» When throwing 3 balls into 3 bins, A= bin 1 is empty and
B = bin 2 is empty are not independent;
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Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed: Pr[A|B] = P;[Agf], so that

PrlAn B]

PrAIB] = PriAl & —p g

= Pr[A] < Pr[AnB] = Pr[A|Pr[B].
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Another picture: We imagine that there are N possible causes

Ai,..., An.
Ay

pn = Pr[A,)

LA
i g n= Pr[B|A,]

CA Ay, ..., Ay disjoint

AN }-‘lJU'-‘Ux‘-‘lg\r =0

Pn

PN

Imagine 100 situations, among which 100p,q, are such that A,

and B occur, forn=1,... N.
Thus, among the 100Y,,, pmgm Situations where B occurred,

there are 100p,qn where A, occurred.

Hence,
PnQn

Pl Bl = & oma
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Why do you have a fever?

Prior Conditional

probabilities probabilities
0.80
Fln \

hes TR 37

Ebola High Fever
/l.l()
Other

0.15x0.80

Using Bayes’ rule, we find

Pr{Flu|High Fever] = ~0.
rIFlulHigh Fever] = G 5 < 0.801 10 5x 1+085x0.1 = 028
-8
PrlEbola|High Fever] = 107 1 ~5x10°8
0.15x0.80 + 108 x 1+0.85 x 0.1
Pr[Other|High Fever] = 0.8501 ~0.42

0.15x0.80+10"8 x 1+0.85x 0.1

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

[Environment)]
Priors:

Pr[A,]
Observe B —»

Posteriors:

Bayes’ Rule Pr[A,|B]

Conditional:
Pr[B|A,]
[Model of system]

Bayes’ Rule is the canonical example of how information
changes our opinions.



Thomas Bayes

Source: Wikipedia.

Thomas Bayes

Mo earlier portrait or claimed portrait survives.

Born ¢ 1701
London, England
Died 7 April 1761 (aged 59)

Tunbridge Wells, Kent, England
Residence Tunbridge Wells, Kent, England
Nationality English
Known for Bayes' theorem




Thomas Bayes

FiG. 3. Joshua Bayes (16711746 ). Thomas Bayes?

A Bayesian picture of Thomas Bayes.
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Testing for disease.

Let’s watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.
» Pr[A] =0.0016, (.16 % of the male population is affected.)
» Pr[B|A] =0.80 (80% chance of positive test with disease.)
» Pr[B|A] =0.10 (10% chance of positive test without

disease.)

From http://www.cpcn.org/01_psa_tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do | have disease?

PriA|B|???
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0.9984 * A70.10

Using Bayes’ rule, we find

0.0016 x 0.80
PIAB] 0.0016 x 0.80+0.9984 x 0.10 013

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?

Impotence...

Incontinence..

Death.
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Summary

‘ Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:
» Conditional Probability:
PriA|B) = 2450

» Independence: Pr[An B] = Pr[A]Pr|[B].
» Bayes’ Rule:

Pr[An]Pr[B|An]
Y. PrlAmPr(B|Am]

Pr[An|B] =

Pr[An|B] = posterior probability; Pr[An] = prior probability .

» All these are possible:
Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].



