Continuing Probability.

Wrap up: Total Probability and Conditional Probability.

Continuing Probability.

Wrap up: Total Probability and Conditional Probability.

Product Rule, Correlation, Independence, Bayes' Rule,

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Two coin flips.

Two coin flips. First flip is heads.

Two coin flips. First flip is heads. Probability of two heads?

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\};$

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads:

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: *A*;

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A =first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads. **The probability of** *B* **given** *A*

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event A = first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads. The probability of *B* given *A* is 1/2.

Conditional Probability.

Definition: The conditional probability of B given A is

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

Suppose I toss 3 balls into 3 bins.

Suppose I toss 3 balls into 3 bins. A = "1st bin empty";

Suppose I toss 3 balls into 3 bins. A = "1st bin empty"; B = "2nd bin empty."

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (\text{bin of red ball}, \text{bin of blue ball}, \text{bin of green ball})$

Pr[B]

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] =$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] =$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

$$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$ $Pr[A \cap B]$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$ $Pr[A \cap B] = Pr[(3, 3, 3)] =$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$ $Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$ $Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$ Pr[A|B]

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$ $Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$ $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$
Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $\begin{aligned} & \Pr[B] = \Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = \Pr[\{1,3\}^3] = \frac{8}{27} \\ & \Pr[A \cap B] = \Pr[(3,3,3)] = \frac{1}{27} \\ & \Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \end{aligned}$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $\begin{aligned} & \Pr[B] = \Pr[\{(a,b,c) \mid a,b,c \in \{1,3\}] = \Pr[\{1,3\}^3] = \frac{8}{27} \\ & \Pr[A \cap B] = \Pr[(3,3,3)] = \frac{1}{27} \\ & \Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } \Pr[A] = \frac{8}{27}. \end{aligned}$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $\begin{aligned} & Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3] = \frac{8}{27} \\ & Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27} \\ & Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } Pr[A] = \frac{8}{27}. \\ & A \text{ is less likely given } B: \end{aligned}$

Suppose I toss 3 balls into 3 bins.

A = "1st bin empty"; B = "2nd bin empty." What is Pr[A|B]?

$$\Omega = \{1, 2, 3\}^3$$

 $\omega = (bin of red ball, bin of blue ball, bin of green ball)$

 $\begin{aligned} & \Pr[B] = \Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}] = \Pr[\{1, 3\}^3] = \frac{8}{27} \\ & \Pr[A \cap B] = \Pr[(3, 3, 3)] = \frac{1}{27} \\ & \Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } \Pr[A] = \frac{8}{27}. \end{aligned}$

A is less likely given *B*: If second bin is empty the first is more likely to have balls in it.

Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black. Pick one at random and place on the table. The upturned side is a Red. What is the probability that the other side is Black? Can't be the BB card, so...prob should be 0.5, right? *R*: upturned card is Red; *RB*: the Red/Black card was selected. Want P(RB|R).

What's wrong with the reasoning that leads to $\frac{1}{2}$?

$$P(RB|R) = \frac{P(RB \cap R)}{P(R)}$$
$$= \frac{\frac{1}{3}\frac{1}{2}}{\frac{1}{3}(1) + \frac{1}{3}\frac{1}{2} + \frac{1}{3}(0)}$$
$$= \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

Once you are given R: it is twice as likely that the RR card was picked.

Flip a fair coin 51 times.

Flip a fair coin 51 times. A = "first 50 flips are heads"

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads"

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$ $B \cap A = \{HH \cdots HH\}$

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$ $B \cap A = \{HH \cdots HH\}$

Uniform probability space.

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$ $B \cap A = \{HH \cdots HH\}$

Uniform probability space.

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$$

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$ $B \cap A = \{HH \cdots HH\}$

Uniform probability space.

 $\Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$

Same as *Pr*[*B*].

Flip a fair coin 51 times. A = "first 50 flips are heads" B = "the 51st is heads" Pr[B|A] ?

 $A = \{HH \cdots HT, HH \cdots HH\}$ $B \cap A = \{HH \cdots HH\}$

Uniform probability space.

$$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$$

Same as Pr[B].

The likelihood of 51st heads does not depend on the previous flips.

Recall the definition:

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

 $Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

=
$$Pr[A \cap B]Pr[C|A \cap B]$$

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

$$= Pr[A \cap B]Pr[C|A \cap B]$$

$$= Pr[A]Pr[B|A]Pr[C|A \cap B].$$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof:

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction.

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction. Assume the result is true for *n*.

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction. Assume the result is true for *n*. (It holds for n = 2.)

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction. Assume the result is true for *n*. (It holds for n = 2.) Then,

 $Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}] = Pr[A_1 \cap \cdots \cap A_n]Pr[A_{n+1}|A_1 \cap \cdots \cap A_n]$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction. Assume the result is true for *n*. (It holds for n = 2.) Then,

 $Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$ = $Pr[A_1 \cap \cdots \cap A_n]Pr[A_{n+1}|A_1 \cap \cdots \cap A_n]$ = $Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}]Pr[A_{n+1}|A_1 \cap \cdots \cap A_n],$

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Proof: By induction. Assume the result is true for *n*. (It holds for n = 2.) Then,

 $\begin{aligned} & Pr[A_1 \cap \dots \cap A_n \cap A_{n+1}] \\ &= Pr[A_1 \cap \dots \cap A_n]Pr[A_{n+1}|A_1 \cap \dots \cap A_n] \\ &= Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \dots \cap A_{n-1}]Pr[A_{n+1}|A_1 \cap \dots \cap A_n], \end{aligned}$

so that the result holds for n+1.

An example.

An example. Random experiment: Pick a person at random.

An example. Random experiment: Pick a person at random. Event *A*: the person has lung cancer.

An example. Random experiment: Pick a person at random. Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

An example. Random experiment: Pick a person at random. Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

An example. Random experiment: Pick a person at random. Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

Smoking increases the probability of lung cancer by 17%.
An example. Random experiment: Pick a person at random. Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \quad \Leftrightarrow \quad \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \quad \Leftrightarrow \quad \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow \quad Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow Pr[B|A] = 1.17 \times Pr[B].$$

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \quad \Leftrightarrow \quad \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow \quad Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow \quad Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

Lung cancer increases the probability of smoking by 17%.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \quad \Leftrightarrow \quad \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow \quad Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow \quad Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking.

Event *A*: the person has lung cancer. Event *B*: the person is a heavy smoker. $Pr[A|B] = 1.17 \times Pr[A]$.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \quad \Leftrightarrow \quad \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\Leftrightarrow \quad Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\Leftrightarrow \quad Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

Tesla owners are more likely to be rich.

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career.

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses.

Events A and B are positively correlated if

 $Pr[A \cap B] > Pr[A]Pr[B].$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N.

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. Thus,

$$Pr[B] = Pr[A_1]Pr[B|A_1] + \dots + Pr[A_N]Pr[B|A_N].$$

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .

 $Pr[B] = Pr[A_1]Pr[B|A_1] + \dots + Pr[A_N]Pr[B|A_N].$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair',

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] =

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\overline{A}] =$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6$,

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] =$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, Pr[A] = 1/2

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$
Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

 $Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] =$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

 $Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\overline{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\overline{A}]$ Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Is your coin loaded? A picture:

A picture:

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that *A* and *B* occur and n := 100(1/2)(0.6) are such that \overline{A} and *B* occur.

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that *A* and *B* occur and n := 100(1/2)(0.6) are such that \overline{A} and *B* occur.

Thus, among the m+n situations where *B* occurred, there are *m* where *A* occurred.

Imagine 100 situations, among which m := 100(1/2)(1/2) are such that *A* and *B* occur and n := 100(1/2)(0.6) are such that \overline{A} and *B* occur.

Thus, among the m+n situations where *B* occurred, there are *m* where *A* occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$

Definition: Two events A and B are independent if

Definition: Two events A and B are independent if

 $Pr[A \cap B] = Pr[A]Pr[B].$

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

Examples:

When rolling two dice, A = sum is 7 and B = red die is 1 are

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

Examples:

When rolling two dice, A = sum is 7 and B = red die is 1 are independent;

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- ▶ When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are

Definition: Two events A and B are independent if

$Pr[A \cap B] = Pr[A]Pr[B].$

- When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent;

Fact: Two events A and B are independent if and only if

Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed:

Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

Fact: Two events A and B are independent if and only if

Pr[A|B] = Pr[A].

Indeed:
$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$
, so that
 $Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A]$

Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that $Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$

Another picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .

Another picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .

Another picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .

Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

Thus, among the $100\sum_{m} p_m q_m$ situations where *B* occurred, there are $100p_n q_n$ where A_n occurred.

Another picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .

Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for n = 1, ..., N.

Thus, among the $100\sum_{m} p_m q_m$ situations where *B* occurred, there are $100p_n q_n$ where A_n occurred.

Hence,

$$Pr[A_n|B] = rac{p_n q_n}{\sum_m p_m q_m}.$$

 $Pr[\mathsf{Flu}|\mathsf{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1}$ pprox 0.58

These are the posterior probabilities.
Why do you have a fever?

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule Operations

Bayes' Rule is the canonical example of how information changes our opinions.

Thomas Bayes

Source: Wikipedia.

Thomas Bayes

A Bayesian picture of Thomas Bayes.

Let's watch TV!!

Let's watch TV!! Random Experiment: Pick a random male.

Let's watch TV!! Random Experiment: Pick a random male. Outcomes: (*test*, *disease*)

Let's watch TV!! Random Experiment: Pick a random male. Outcomes: (*test*, *disease*) *A* - prostate cancer.

B - positive PSA test.

Let's watch TV!! Random Experiment: Pick a random male. Outcomes: (*test*, *disease*)

- A prostate cancer.
- *B* positive PSA test.
 - ▶ Pr[A] = 0.0016, (.16 % of the male population is affected.)
 - ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
 - Pr[B|A] = 0.10 (10% chance of positive test without disease.)

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ▶ Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- Pr[B|A] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- ▶ Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- ► Pr[B|Ā] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes: (test, disease)

A - prostate cancer.

B - positive PSA test.

- Pr[A] = 0.0016, (.16 % of the male population is affected.)
- ▶ Pr[B|A] = 0.80 (80% chance of positive test with disease.)
- Pr[B|A] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01_psa_tests.htm and http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Using Bayes' rule, we find

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10}$$

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test.

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone?

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone? Impotence...

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone? Impotence...

Incontinence..

Using Bayes' rule, we find

$$P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = .013.$$

A 1.3% chance of prostate cancer with a positive PSA test. Surgery anyone? Impotence...

Incontinence..

Death.

Events, Conditional Probability, Independence, Bayes' Rule

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

• Conditional Probability: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

• Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability .$

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

▶ Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability .$

All these are possible: Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].