Continuing Probability.

Wrap up: Total Probability and Conditional Probability.
Continuing Probability.

Wrap up: Total Probability and Conditional Probability.

Product Rule, Correlation, Independence, Bayes’ Rule,
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$
Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then, $Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B]$.

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$.
Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N. Then,

$$
\Pr[B] = \Pr[A_1 \cap B] + \cdots + \Pr[A_N \cap B].
$$

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$.
Conditional probability: example.

Two coin flips.
Conditional probability: example.

Two coin flips. First flip is heads.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?

\[\Omega = \{HH, HT, TH, TT\}; \]
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?

\[\Omega = \{HH, HT, TH, TT\} \]; Uniform probability space.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? \(\Omega = \{HH, HT, TH, TT\} \); Uniform probability space. Event \(A = \) first flip is heads:
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space.
Event $A =$ first flip is heads: $A = \{HH, HT\}$.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
\(\Omega = \{HH, HT, TH, TT\}\); Uniform probability space.
Event \(A\) = first flip is heads: \(A = \{HH, HT\}\).
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads?
\(\Omega = \{HH, HT, TH, TT\} \); Uniform probability space.
Event \(A = \) first flip is heads: \(A = \{HH, HT\} \).

\[\Omega: \text{uniform} \]

\[\bullet TH \quad \bullet HH \]

\[\bullet TT \quad \bullet HT \]

New sample space: \(A \);
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? \(\Omega = \{HH, HT, TH, TT\} \); Uniform probability space. Event \(A = \) first flip is heads: \(A = \{HH, HT\} \).

New sample space: \(A \); uniform still.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? \(\Omega = \{HH, HT, TH, TT\} \); Uniform probability space. Event \(A = \) first flip is heads: \(A = \{HH, HT\} \).

\[
\begin{array}{c}
\Omega : \text{uniform} \\
\bullet TH & \bullet HH \\
\bullet TT & \bullet HT \\
\end{array}
\]

New sample space: \(A \); uniform still.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $$\Omega = \{HH, HT, TH, TT\};$$ Uniform probability space. Event $$A =$$ first flip is heads: $$A = \{HH, HT\}.$$

New sample space: $$A;$$ uniform still.

Event $$B =$$ two heads.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? $\Omega = \{HH, HT, TH, TT\}$; Uniform probability space. Event $A =$ first flip is heads: $A = \{HH, HT\}$.

New sample space: A; uniform still.

Event $B =$ two heads. The probability of two heads if the first flip is heads.
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? \(\Omega = \{HH, HT, TH, TT\} \); Uniform probability space. Event \(A = \) first flip is heads: \(A = \{HH, HT\} \).

\[\Omega : \text{uniform} \]

\[\bullet TH \quad \bullet HH \]
\[\bullet TT \quad \bullet HT \]

New sample space: \(A \); uniform still.

\[\bullet HH \quad \bullet HT \]

Event \(B = \) two heads.

The probability of two heads if the first flip is heads. \textbf{The probability of } B \textbf{ given } A
Conditional probability: example.

Two coin flips. First flip is heads. Probability of two heads? \(\Omega = \{HH, HT, TH, TT\} \); Uniform probability space. Event \(A = \) first flip is heads: \(A = \{HH, HT\} \).

\[\Omega : \text{uniform} \]

\[\begin{array}{c}
\bullet TH \\
\bullet TT
\end{array} \quad \begin{array}{c}
\bullet HH \\
\bullet HT
\end{array} \quad A \]

New sample space: \(A \); uniform still.

\[\begin{array}{c}
\bullet HH \\
\bullet HT
\end{array} \quad \begin{array}{c}
A : \text{uniform}
\end{array} \]

Event \(B = \) two heads.

The probability of two heads if the first flip is heads. \(\textbf{The probability of } B \textbf{ given } A \) is \(1/2 \).
Definition: The conditional probability of B given A is

\[Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} \]
Emptiness.

Suppose I toss 3 balls into 3 bins.
Emptiness..

Suppose I toss 3 balls into 3 bins.

$A = \text{“1st bin empty”}$;
Emptiness.

Suppose I toss 3 balls into 3 bins.
$A =$“1st bin empty”; $B =$“2nd bin empty.”
Suppose I toss 3 balls into 3 bins.
\(A = \text{"1st bin empty"}; \ B = \text{"2nd bin empty."} \) What is \(Pr[A \mid B] \)?
Emptiness..

Suppose I toss 3 balls into 3 bins.
$A =$“1st bin empty”; $B =$“2nd bin empty.” What is $Pr[A|B]$?

$\Omega = \{1, 2, 3\}^3$

$\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})$
Emptiness..

Suppose I toss 3 balls into 3 bins. $A =$“1st bin empty”; $B =$“2nd bin empty.” What is $Pr[A|B]$?

$\Omega = \{1, 2, 3\}^3$

$\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})$

$Pr[B]$
Suppose I toss 3 balls into 3 bins. $A = \text{“1st bin empty”;}$ $B = \text{“2nd bin empty.”}$ What is $Pr[A | B]$?

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = \frac{8}{27}$
Suppose I toss 3 balls into 3 bins.

$A =$“1st bin empty”; $B =$“2nd bin empty.” What is $Pr[A|B]$?

$\Omega = \{1, 2, 3\}^3$

$\omega = \text{(bin of red ball, bin of blue ball, bin of green ball)}$

$Pr[B] = Pr[(a, b, c) | a, b, c \in \{1, 3\}] = Pr[\{1, 3\}^3]$ =
Suppose I toss 3 balls into 3 bins. $A = \text{“1st bin empty”}; \ B = \text{“2nd bin empty.”}$ What is $Pr[A|B]$?

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$
Suppose I toss 3 balls into 3 bins.
$A = \{1\text{st bin empty}\}; \ B = \{2\text{nd bin empty}\}.$ What is $Pr[A \mid B]$?

$\Omega = \{1, 2, 3\}^3$

$\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})$

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$

$Pr[A \cap B] = \frac{1}{8}$; $Pr[A] = \frac{8}{27}$. A is less likely given B: If second bin is empty the first is more likely to have balls in it.
Emptiness..

Suppose I toss 3 balls into 3 bins.
\(A = \text{“1st bin empty”}; \; B = \text{“2nd bin empty.”} \) What is \(Pr[A|B] \)?

\[
\Omega = \{1, 2, 3\}^3
\]

\[
\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})
\]

\[
Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}
\]

\[
Pr[A \cap B] = Pr[(3, 3, 3)] = \quad
\]
Suppose I toss 3 balls into 3 bins.

\(A = \text{“1st bin empty”}; \) \(B = \text{“2nd bin empty.”} \) What is \(Pr[A|B] \)?

\[
\begin{align*}
\Omega &= \{1, 2, 3\}^3 \\
\omega &= (\text{bin of red ball, bin of blue ball, bin of green ball}) \\
Pr[B] &= Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27} \\
Pr[A \cap B] &= Pr[(3, 3, 3)] = \frac{1}{27}
\end{align*}
\]
Emptiness..

Suppose I toss 3 balls into 3 bins.
A = “1st bin empty”; B = “2nd bin empty.” What is $Pr[A|B]$?

$\Omega = \{1, 2, 3\}^3$

$\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})$

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$

$Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$

$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{\frac{1}{27}}{\frac{8}{27}} = \frac{1}{8}$
Emptiness..

Suppose I toss 3 balls into 3 bins.
A = “1st bin empty”; B = “2nd bin empty.” What is \(Pr[A|B] \)?

\[
\Omega = \{1, 2, 3\}^3
\]

\[
\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})
\]

\[
Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}
\]

\[
Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}
\]

\[
Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{1}{8}
\]

\(A \) is less likely given \(B \): If second bin is empty the first is more likely to have balls in it.
Suppose I toss 3 balls into 3 bins.
A = “1st bin empty”; B = “2nd bin empty.” What is $Pr[A|B]$?

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$

$Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$

$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8$;
Emptiness..

Suppose I toss 3 balls into 3 bins. $A = “1st bin empty”; B = “2nd bin empty.”$ What is $Pr[A|B]?$

$\Omega = \{1, 2, 3\}^3$

$\omega = (\text{bin of red ball, bin of blue ball, bin of green ball})$

$Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}$

$Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}$

$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } Pr[A] = \frac{8}{27}.$
Suppose I toss 3 balls into 3 bins.
\(A = \text{“1st bin empty”}; \ B = \text{“2nd bin empty.”} \) What is \(Pr[A|B] \)?

\[\Pr[B] = \Pr[(a, b, c) \mid a, b, c \in \{1, 3\}] = \Pr[\{1, 3\}^3] = \frac{8}{27} \]

\[\Pr[A \cap B] = \Pr[(3, 3, 3)] = \frac{1}{27} \]

\[\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]} = \frac{(1/27)}{(8/27)} = 1/8; \text{ vs. } \Pr[A] = \frac{8}{27}. \]

\(A \) is less likely given \(B \):
Suppose I toss 3 balls into 3 bins.
\(A = \text{“1st bin empty”}; \ B = \text{“2nd bin empty.”} \) What is \(Pr[A|B] \)?

\[
\Omega = \{1, 2, 3\}^3
\]

\(\omega = (\text{bin of red ball, bin of blue ball, bin of green ball}) \)

\[
Pr[B] = Pr[\{(a, b, c) \mid a, b, c \in \{1, 3\}\}] = Pr[\{1, 3\}^3] = \frac{8}{27}
\]

\[
Pr[A \cap B] = Pr[(3, 3, 3)] = \frac{1}{27}
\]

\[
Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} = \frac{\left(\frac{1}{27}\right)}{\left(\frac{8}{27}\right)} = 1/8; \ \text{vs.} \ Pr[A] = \frac{8}{27}.
\]

\(A \) is less likely given \(B \): If second bin is empty the first is more likely to have balls in it.
Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black.
Pick one at random and place on the table. The upturned side is a Red. What is the probability that the other side is Black?
Can’t be the BB card, so... prob should be 0.5, right?

R: upturned card is Red; RB: the Red/Black card was selected.
Want $P(RB|R)$.

What’s wrong with the reasoning that leads to $\frac{1}{2}$?

$$
P(RB|R) = \frac{P(RB \cap R)}{P(R)}
$$

$$
= \frac{\frac{1}{3} \cdot \frac{1}{2}}{\frac{1}{3}(1) + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3}(0)}
$$

$$
= \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}
$$

Once you are given R: it is twice as likely that the RR card was picked.
Gambler’s fallacy.

Flip a fair coin 51 times.
Gambler’s fallacy.

Flip a fair coin 51 times.
$A =$ “first 50 flips are heads”
Gambler’s fallacy.

Flip a fair coin 51 times.
A = “first 50 flips are heads”
B = “the 51st is heads”
Gambler’s fallacy.

Flip a fair coin 51 times.

\(A = \) “first 50 flips are heads”

\(B = \) “the 51st is heads”

\(Pr[B|A] \) ?
Gambler’s fallacy.

Flip a fair coin 51 times.
\(A = \) “first 50 flips are heads”
\(B = \) “the 51st is heads”
\(Pr[B|A] \)?
\(A = \{HH\cdots HT, HH\cdots HH\} \)
Gambler’s fallacy.

Flip a fair coin 51 times.
A = “first 50 flips are heads”
B = “the 51st is heads”
Pr[B|A] ?

A = \{HH \cdots HT, HH \cdots HH\}
B \cap A = \{HH \cdots HH\}
Gambler’s fallacy.

Flip a fair coin 51 times.
$A =$ “first 50 flips are heads”
$B =$ “the 51st is heads”
$Pr[B|A]$?

$A = \{HH \cdots HT, HH \cdots HH\}$
$B \cap A = \{HH \cdots HH\}$

Uniform probability space.
Gambler’s fallacy.

Flip a fair coin 51 times.
$A =$ “first 50 flips are heads”
$B =$ “the 51st is heads”
$Pr[B|A]$?

$A = \{HH\cdots HT, HH\cdots HH\}$

$B \cap A = \{HH\cdots HH\}$

Uniform probability space.

$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$
Gambler’s fallacy.

Flip a fair coin 51 times.
$A = “$first 50 flips are heads”$
$B = “the 51st is heads”$
$Pr[B|A] ?$

$A = \{HH \cdots HT, HH \cdots HH\}$
$B \cap A = \{HH \cdots HH\}$

Uniform probability space.
$\Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}$.

Same as $\Pr[B]$.
Gambler’s fallacy.

Flip a fair coin 51 times.
$A =$ “first 50 flips are heads”
$B =$ “the 51st is heads”
$Pr[B|A]$?

$A = \{HH\cdots HT, HH\cdots HH\}$
$B \cap A = \{HH\cdots HH\}$

Uniform probability space.

$Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{2}.$

Same as $Pr[B]$.

The likelihood of 51st heads does not depend on the previous flips.
Product Rule

Recall the definition:
Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$
Recall the definition:

\[Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} \]

Hence,

\[Pr[A \cap B] = Pr[A]Pr[B|A]. \]
Product Rule

Recall the definition:

\[
Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.
\]

Hence,

\[
Pr[A \cap B] = Pr[A] \cdot Pr[B|A].
\]

Consequently,

\[
Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C].
\]
Product Rule

Recall the definition:

\[Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]} . \]

Hence,

\[Pr[A \cap B] = Pr[A] Pr[B|A] . \]

Consequently,

\[Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C] = Pr[A \cap B] Pr[C|A \cap B] . \]
Product Rule

Recall the definition:

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

$$= Pr[A \cap B]Pr[C|A \cap B]$$

$$= Pr[A]Pr[B|A]Pr[C|A \cap B].$$
Theorem Product Rule
Let A_1, A_2, \ldots, A_n be events. Then
Theorem Product Rule

Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}] .$$
Theorem Product Rule
Let \(A_1, A_2, \ldots, A_n \) be events. Then

\[
Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].
\]

Proof:
Theorem Product Rule
Let \(A_1, A_2, \ldots, A_n \) be events. Then

\[
Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].
\]

Proof: By induction.
Theorem Product Rule
Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.
Assume the result is true for n.
Theorem Product Rule

Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction.

Assume the result is true for n. (It holds for $n = 2$.)
Theorem Product Rule
Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] .$$

Proof: By induction.
Assume the result is true for n. (It holds for $n = 2$.) Then,

$$Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$
$$= Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n]$$
Theorem Product Rule
Let A_1, A_2, \ldots, A_n be events. Then

$$Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] .$$

Proof: By induction.
Assume the result is true for n. (It holds for $n = 2$.) Then,

\[
Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}] = Pr[A_1 \cap \cdots \cap A_n] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n] \\
= Pr[A_1] Pr[A_2 | A_1] \cdots Pr[A_n | A_1 \cap \cdots \cap A_{n-1}] Pr[A_{n+1} | A_1 \cap \cdots \cap A_n],
\]
Theorem Product Rule

Let A_1, A_2, \ldots, A_n be events. Then

$$\Pr[A_1 \cap \cdots \cap A_n] = \Pr[A_1] \Pr[A_2|A_1] \cdots \Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$$

Proof: By induction. Assume the result is true for n. (It holds for $n = 2$.) Then,

$$\Pr[A_1 \cap \cdots \cap A_n \cap A_{n+1}]$$

$$= \Pr[A_1 \cap \cdots \cap A_n] \Pr[A_{n+1}|A_1 \cap \cdots \cap A_n]$$

$$= \Pr[A_1] \Pr[A_2|A_1] \cdots \Pr[A_n|A_1 \cap \cdots \cap A_{n-1}] \Pr[A_{n+1}|A_1 \cap \cdots \cap A_n],$$

so that the result holds for $n+1$. \qed
Correlation

An example.

Random experiment: Pick a person at random.

Event A: the person has lung cancer.

Event B: the person is a heavy smoker.

Fact: $\Pr[A|B] = 1.17 \times \Pr[A]$.

Conclusion:

\Rightarrow Smoking increases the probability of lung cancer by 17%.

\Rightarrow Smoking causes lung cancer.
Correlation

An example.
Random experiment: Pick a person at random.
Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.
Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$
Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
Correlation

An example.
Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:

$$Pr[A|B] = 1.17 \times Pr[A].$$

Conclusion:

- Smoking increases the probability of lung cancer by 17%.
- Smoking causes lung cancer.
Correlation

Conclusion:
▶ Lung cancer increases the probability of smoking by 17%.
▶ Lung cancer causes smoking. Really?
Correlation

A second look.

Conclusion:
▶ Lung cancer increases the probability of smoking by 17%.
▶ Lung cancer causes smoking.
Really?
Correlation

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

Conclusion:

▶ Lung cancer increases the probability of smoking by 17%.
▶ Lung cancer causes smoking.

Really?
Correlation

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$

$$\iff Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$

Conclusion:

▶ Lung cancer increases the probability of smoking by 17%.

▶ Lung cancer causes smoking. Really?
Correlation

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\iff Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\iff Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking.
- Really?
Correlation

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\iff Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\iff Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\iff Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\iff Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking.
Correlation

A second look.

Note that

$$Pr[A|B] = 1.17 \times Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = 1.17 \times Pr[A]$$
$$\iff Pr[A \cap B] = 1.17 \times Pr[A]Pr[B]$$
$$\iff Pr[B|A] = 1.17 \times Pr[B].$$

Conclusion:

- Lung cancer increases the probability of smoking by 17%.
- Lung cancer causes smoking. Really?
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

▶ Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.

▶ People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.

▶ Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes $A.$
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career.
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses.
Causality vs. Correlation

Events A and B are **positively correlated** if

$$Pr[A \cap B] > Pr[A]Pr[B].$$

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A causes B or that B causes A.

Other examples:

- Tesla owners are more likely to be rich. That does not mean that poor people should buy a Tesla to get rich.
- People who go to the opera are more likely to have a good career. That does not mean that going to the opera will improve your career.
- Rabbits eat more carrots and do not wear glasses. Are carrots good for eyesight?
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$.

Thus, $\Pr[B] = \Pr[A_1] \Pr[B | A_1] + \cdots + \Pr[A_N] \Pr[B | A_N]$.
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$.
Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

Indeed, B is the union of the disjoint sets $A_n \cap B$ for $n = 1, \ldots, N$. Thus,

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N.

\[
\]
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(\Pr[H] = 0.6 \), otherwise.
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(Pr[H] = 0.6 \), otherwise.

You flip your coin and it yields heads.
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(Pr[H] = 0.6 \), otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:
Is your coin loaded?
Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:
\[A = \text{‘coin is fair’}, \]
Is your coin loaded?
Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$A = \text{`coin is fair'}, B = \text{`outcome is heads'}$
Is your coin loaded?
Your coin is fair w.p. $1/2$ or such that $Pr[H] = 0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$$A = \text{`coin is fair'}, \ B = \text{`outcome is heads'}$$

We want to calculate $P[A|B]$.
Is your coin loaded?

Your coin is fair w.p. $1/2$ or such that $Pr[H] = 0.6$, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$A = \text{‘coin is fair’}, B = \text{‘outcome is heads’}$

We want to calculate $P[A|B]$.

We know $P[B|A] =$
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(Pr[H] = 0.6 \), otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

\[A = \text{‘coin is fair’}, \quad B = \text{‘outcome is heads’} \]

We want to calculate \(P[A|B] \).

We know \(P[B|A] = 1/2, P[B|\bar{A}] = \)
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$A = \text{‘coin is fair’}, B = \text{‘outcome is heads’}$

We want to calculate $P[A|B]$.

We know $P[B|A] = 1/2, P[B|\bar{A}] = 0.6$,

Is your coin loaded?

Your coin is fair w.p. $1/2$ or such that $Pr[H] = 0.6$, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$A = \text{‘coin is fair’}, B = \text{‘outcome is heads’}$

We want to calculate $P[A|B]$.

We know $P[B|A] = 1/2$, $P[B|\bar{A}] = 0.6$, $Pr[A] =$
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(Pr[H] = 0.6 \), otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

\[A = \text{‘coin is fair’}, B = \text{‘outcome is heads’} \]

We want to calculate \(P[A|B] \).

We know \(P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] = 1/2 \)
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(Pr[H] = 0.6 \), otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

\[
A = \text{‘coin is fair’}, \quad B = \text{‘outcome is heads’}
\]

We want to calculate \(P[A|B] \).

We know \(P[B|A] = 1/2, \quad P[B|\bar{A}] = 0.6, \quad Pr[A] = 1/2 = Pr[\bar{A}] \)
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that \(Pr[H] = 0.6 \), otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

\[A = \text{‘coin is fair’}, \ B = \text{‘outcome is heads’} \]

We want to calculate \(P[A|B] \).

We know \(P[B|A] = 1/2, P[B|\bar{A}] = 0.6, Pr[A] = 1/2 = Pr[\bar{A}] \)

Now,

\[
Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] =
\]
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

\[A = \text{‘coin is fair’}, B = \text{‘outcome is heads’} \]

We want to calculate $P[A|B]$.

We know $P[B|A] = 1/2$, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$

Now,

\[Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \]
Is your coin loaded?
Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.
You flip your coin and it yields heads.
What is the probability that it is fair?

Analysis:

$A = \text{‘coin is fair’, } B = \text{‘outcome is heads’}$

We want to calculate $P[A|B]$.

We know $P[B|A] = 1/2$, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$

Now,

$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$

$= (1/2)(1/2) + (1/2)0.6 = 0.55.$
Is your coin loaded?

Your coin is fair w.p. 1/2 or such that $Pr[H] = 0.6$, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

$A = \text{‘coin is fair’}, \ B = \text{‘outcome is heads’}$

We want to calculate $Pr[A|B]$.

We know $Pr[B|A] = 1/2, Pr[B|\overline{A}] = 0.6, Pr[A] = 1/2 = Pr[\overline{A}]$

Now,

$$Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B] = Pr[A]Pr[B|A] + Pr[\overline{A}]Pr[B|\overline{A}]$$

$$= (1/2)(1/2) + (1/2)0.6 = 0.55.$$

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$
Is your coin loaded?

A picture:
Is your coin loaded?

A picture:
Is your coin loaded?

Imagine 100 situations, among which

\[m := 100 \cdot \frac{1}{2} \cdot \frac{1}{2} \] are such that \(A \) and \(B \) occur and

\[n := 100 \cdot \frac{1}{2} \cdot 0.6 \] are such that \(\bar{A} \) and \(B \) occur.

Thus, among the \(m + n \) situations where \(B \) occurred, there are \(m \) where \(A \) occurred.

Hence,

\[
\Pr[A|B] = \frac{m}{m + n} = \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) \left(\frac{1}{2} \right) + (0.6).
\]
Is your coin loaded?

A picture:

Imagine 100 situations, among which $m := 100(1/2)(1/2)$ are such that A and B occur and $n := 100(1/2)(0.6)$ are such that \bar{A} and B occur.

Thus, among the $m + n$ situations where B occurred, there are m where A occurred.
Is your coin loaded?

A picture:

Imagine 100 situations, among which $m := 100(1/2)(1/2)$ are such that A and B occur and $n := 100(1/2)(0.6)$ are such that \bar{A} and B occur.

Thus, among the $m + n$ situations where B occurred, there are m where A occurred.

Hence,

$$Pr[A|B] = \frac{m}{m+n} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6}.$$
Independence

Definition: Two events A and B are *independent* if

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B].$$

Examples:

- When rolling two dice, $A = \text{sum is 7}$ and $B = \text{red die is 1}$ are independent;
- When rolling two dice, $A = \text{sum is 3}$ and $B = \text{red die is 1}$ are not independent;
- When flipping coins, $A = \text{coin 1 yields heads}$ and $B = \text{coin 2 yields tails}$ are independent;
- When throwing 3 balls into 3 bins, $A = \text{bin 1 is empty}$ and $B = \text{bin 2 is empty}$ are not independent;
Independence

Definition: Two events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B].$$
Independence

Definition: Two events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:
Independence

Definition: Two events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independence.
- When rolling two dice, $A =$ sum is 3 and $B =$ red die is 1 are not independent.
- When flipping coins, $A =$ coin 1 yields heads and $B =$ coin 2 yields tails are independent.
- When throwing 3 balls into 3 bins, $A =$ bin 1 is empty and $B =$ bin 2 is empty are not independent.
Independence

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independent;
Definition: Two events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independent;
- When rolling two dice, $A =$ sum is 3 and $B =$ red die is 1 are
Independence

Definition: Two events \(A \) and \(B \) are independent if

\[
Pr[A \cap B] = Pr[A]Pr[B].
\]

Examples:

- When rolling two dice, \(A \) = sum is 7 and \(B \) = red die is 1 are independent;
- When rolling two dice, \(A \) = sum is 3 and \(B \) = red die is 1 are not independent;
Independence

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independent;
- When rolling two dice, $A =$ sum is 3 and $B =$ red die is 1 are **not** independent;
- When flipping coins, $A =$ coin 1 yields heads and $B =$ coin 2 yields tails are
Independence

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A = \text{sum is 7}$ and $B = \text{red die is 1}$ are independent;
- When rolling two dice, $A = \text{sum is 3}$ and $B = \text{red die is 1}$ are **not** independent;
- When flipping coins, $A = \text{coin 1 yields heads}$ and $B = \text{coin 2 yields tails}$ are independent;
Independence

Definition: Two events A and B are **independent** if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independent;
- When rolling two dice, $A =$ sum is 3 and $B =$ red die is 1 are **not** independent;
- When flipping coins, $A =$ coin 1 yields heads and $B =$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A =$ bin 1 is empty and $B =$ bin 2 is empty are
Independence

Definition: Two events A and B are independent if

$$Pr[A \cap B] = Pr[A]Pr[B].$$

Examples:

- When rolling two dice, $A =$ sum is 7 and $B =$ red die is 1 are independent;
- When rolling two dice, $A =$ sum is 3 and $B =$ red die is 1 are not independent;
- When flipping coins, $A =$ coin 1 yields heads and $B =$ coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, $A =$ bin 1 is empty and $B =$ bin 2 is empty are not independent;
Independence and conditional probability

Fact: Two events A and B are **independent** if and only if
Independence and conditional probability

Fact: Two events A and B are *independent* if and only if

$$Pr[A|B] = Pr[A].$$
Independence and conditional probability

Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed:
Fact: Two events A and B are **independent** if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that
Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = Pr[A]$$
Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that

$$Pr[A|B] = Pr[A] \iff \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \iff Pr[A \cap B] = Pr[A]Pr[B].$$
Bayes Rule

Another picture: We imagine that there are N possible causes A_1, \ldots, A_N.

Thus, among the $\sum m p_m q_m$ situations where B occurred, there are $100 p_n q_n$ where A_n occurred. Hence, $\Pr[A_n | B] = \frac{p_n q_n}{\sum m p_m q_m}$.
Bayes Rule

Another picture: We imagine that there are N possible causes A_1, \ldots, A_N.

$$
\begin{align*}
A_1 & \\
p_1 & \rightarrow \ A_n & p_n = Pr[A_n] \\
q_1 & \rightarrow B & q_n = Pr[B | A_n] \\
p_n & \rightarrow A_n & A_1, \ldots, A_N \text{ disjoint} \\
q_n & \rightarrow B & A_1 \cup \cdots \cup A_N = \Omega \\
p_N & \rightarrow A_N \\
q_N & \rightarrow B
\end{align*}
$$
Bayes Rule

Another picture: We imagine that there are N possible causes A_1, \ldots, A_N.

Imagine 100 situations, among which $100p_nq_n$ are such that A_n and B occur, for $n = 1, \ldots, N$.

Thus, among the $100 \sum_m p_m q_m$ situations where B occurred, there are $100p_nq_n$ where A_n occurred.
Bayes Rule

Another picture: We imagine that there are \(N \) possible causes \(A_1, \ldots, A_N \).

Imagine 100 situations, among which \(100p_nq_n \) are such that \(A_n \) and \(B \) occur, for \(n = 1, \ldots, N \).

Thus, among the \(100 \sum_m p_mq_m \) situations where \(B \) occurred, there are \(100p_nq_n \) where \(A_n \) occurred.

Hence,

\[
Pr[A_n|B] = \frac{p_nq_n}{\sum_m p_mq_m}.
\]
Why do you have a fever?

Using Bayes' rule, we find

$$\Pr[\text{Flu} \mid \text{High Fever}] = 0.15 \times 0.80 = 0.12 \approx 0.58$$

$$\Pr[\text{Ebola} \mid \text{High Fever}] = 10^{-8} \times 0.80 = 10^{-8} \approx 5 \times 10^{-8}$$

$$\Pr[\text{Other} \mid \text{High Fever}] = 0.85 \times 0.15 \times 0.80 + 10^{-8} \times 10^{-8} \approx 0.42$$

These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
Why do you have a fever?

Using Bayes’ rule, we find

\[
\Pr[\text{Flu} | \text{High Fever}] = 0.15 \times 0.80 = 0.12 \approx 0.58
\]

\[
\Pr[\text{Ebola} | \text{High Fever}] = 10^{-8} \times 1 = 10^{-8} \approx 5 \times 10^{-8}
\]

\[
\Pr[\text{Other} | \text{High Fever}] = 0.85 \times 0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.10 \approx 0.42
\]

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high fever.
Why do you have a fever?

Using Bayes’ rule, we find

$$
Pr[Flu|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
$$
Why do you have a fever?

Using Bayes’ rule, we find

\[
Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
\]

\[
Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}
\]

These are the posterior probabilities.

One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.
Why do you have a fever?

Using Bayes’ rule, we find

\[
Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
\]

\[
Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}
\]

\[
Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42
\]

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high fever.
Why do you have a fever?

Using Bayes’ rule, we find

\[
Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
\]

\[
Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}
\]

\[
Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42
\]

These are the posterior probabilities.
Why do you have a fever?

Using Bayes' rule, we find

\[
Pr[\text{Flu}|\text{High Fever}] = \frac{0.15 \times 0.80}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.58
\]

\[
Pr[\text{Ebola}|\text{High Fever}] = \frac{10^{-8} \times 1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 5 \times 10^{-8}
\]

\[
Pr[\text{Other}|\text{High Fever}] = \frac{0.85 \times 0.1}{0.15 \times 0.80 + 10^{-8} \times 1 + 0.85 \times 0.1} \approx 0.42
\]

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a Posteriori (MAP) cause of the high fever.
Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information changes our opinions.
Bayes’ Rule Operations

[Environment]

Priors: $Pr[A_n]$

Observe B

Bayes’ Rule

Posterioris: $Pr[A_n|B]$

Conditional: $Pr[B|A_n]$

[Model of System]
Bayes’ Rule is the canonical example of how information changes our opinions.
Thomas Bayes

Portrait used of Bayes in a 1936 book,[1] but it is doubtful whether the portrait is actually of him.[2] No earlier portrait or claimed portrait survives.

Born c. 1701
London, England

Died 7 April 1761 (aged 59)
Tunbridge Wells, Kent, England

Residence Tunbridge Wells, Kent, England

Nationality English

Known for Bayes' theorem

A Bayesian picture of Thomas Bayes.
Testing for disease.

Let's watch TV!!

Random Experiment: Pick a random male.

Outcomes:

A - prostate cancer.
B - positive PSA test.

$\Pr[A] = 0.0016$, (0.16% of the male population is affected.)

$\Pr[B|A] = 0.80$ (80% chance of positive test with disease.)

$\Pr[B|A] = 0.10$ (10% chance of positive test without disease.)

Positive PSA test (B). Do I have disease? $\Pr[A|B]$??
Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: *(test, disease)*
Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: (test, disease)
A - prostate cancer.
B - positive PSA test.
Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: \((test, disease)\)
\(A\) - prostate cancer.
\(B\) - positive PSA test.

- \(Pr[A] = 0.0016\), (.16 \% of the male population is affected.)
- \(Pr[B|A] = 0.80\) (80\% chance of positive test with disease.)
- \(Pr[B|\bar{A}] = 0.10\) (10\% chance of positive test without disease.)

Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: \((test, disease)\)
\(A\) - prostate cancer.
\(B\) - positive PSA test.

\[Pr[A] = 0.0016, \text{ (.16 \% of the male population is affected.)} \]
\[Pr[B|A] = 0.80 \text{ (80\% chance of positive test with disease.)} \]
\[Pr[B|\bar{A}] = 0.10 \text{ (10\% chance of positive test without disease.)} \]

Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: \((test, disease)\)
\(A\) - prostate cancer.
\(B\) - positive PSA test.

\[
\begin{align*}
Pr[A] &= 0.0016, \text{ (.16 \% of the male population is affected.)} \\
Pr[B|A] &= 0.80 \text{ (80\% chance of positive test with disease.)} \\
Pr[B|\overline{A}] &= 0.10 \text{ (10\% chance of positive test without disease.)}
\end{align*}
\]

Positive PSA test \((B)\). Do I have disease?
Testing for disease.

Let’s watch TV!!
Random Experiment: Pick a random male.
Outcomes: \((test, disease)\)
\(A\) - prostate cancer.
\(B\) - positive PSA test.

- \(Pr[A] = 0.0016\), (.16 % of the male population is affected.)
- \(Pr[B|A] = 0.80\) (80% chance of positive test with disease.)
- \(Pr[B|\overline{A}] = 0.10\) (10% chance of positive test without disease.)

Positive PSA test \((B)\). Do I have disease?

\(Pr[A|B]??)\)
Using Bayes' rule, we find
\[P[A|B] = 0.0016 \times 0.80 + 0.9984 \times 0.10 = 0.013. \]

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence...

Death.
Using Bayes’ rule, we find

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.
Bayes Rule.

Using Bayes’ rule, we find

\[
P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10}
\]

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.
Using Bayes’ rule, we find

\[P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013. \]
Bayes Rule.

Using Bayes’ rule, we find

\[
P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013.
\]

A 1.3% chance of prostate cancer with a positive PSA test.
Using Bayes’ rule, we find

\[P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013. \]

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?
Using Bayes’ rule, we find

\[P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013. \]

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...
Using Bayes’ rule, we find

\[
P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013.
\]

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence.
Using Bayes’ rule, we find

\[
P[A|B] = \frac{0.0016 \times 0.80}{0.0016 \times 0.80 + 0.9984 \times 0.10} = 0.013.
\]

A 1.3% chance of prostate cancer with a positive PSA test.
Surgery anyone?
Impotence...
Incontinence..
Death.
Summary

Events, Conditional Probability, Independence, Bayes’ Rule
Summary

Key Ideas:

- **Conditional Probability:**
 \[Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \]
Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- Conditional Probability:
 \[
 Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}
 \]

- Independence: \(Pr[A \cap B] = Pr[A]Pr[B] \).
Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- **Conditional Probability:**
 \[Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \]

- **Independence:**
 \[Pr[A \cap B] = Pr[A]Pr[B]. \]

- **Bayes’ Rule:**
 \[Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}. \]
Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- Conditional Probability:
 \[Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \]
- Bayes’ Rule:
 \[Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]} \cdot \]

\[Pr[A_n|B] = \text{posterior probability}; \ Pr[A_n] = \text{prior probability} . \]
Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

- **Conditional Probability:**
 \[Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]} \]

- **Independence:**
 \[Pr[A \cap B] = Pr[A]Pr[B] \]

- **Bayes’ Rule:**
 \[
 Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.
 \]

 \(Pr[A_n|B] = \) posterior probability; \(\Pr[A_n] = \) prior probability

- All these are possible:
 \[Pr[A|B] < \Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = \Pr[A] \]