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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An∩B for n = 1, . . . ,N.
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Conditional probability: example.

Two coin flips.

First flip is heads. Probability of two heads?
Ω = {HH,HT ,TH,TT}; Uniform probability space.
Event A = first flip is heads: A = {HH,HT}.

New sample space: A; uniform still.

Event B = two heads.

The probability of two heads if the first flip is heads.
The probability of B given A is 1/2.
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Conditional Probability.

Definition: The conditional probability of B given A is

Pr [B|A] =
Pr [A∩B]

Pr [A]



Emptiness..
Suppose I toss 3 balls into 3 bins.

A =“1st bin empty”; B =“2nd bin empty.” What is Pr [A|B]?

Pr [B] = Pr [{(a,b,c) | a,b,c ∈ {1,3}] = Pr [{1,3}3] = 8
27

Pr [A∩B] = Pr [(3,3,3)] = 1
27

Pr [A|B] = Pr [A∩B]
Pr [B] = (1/27)

(8/27) = 1/8; vs. Pr [A] = 8
27 .

A is less likely given B: If second bin is empty the first is more
likely to have balls in it.
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Outline Conditional Probability Mult. Rule Bayes Rule Independence Takeaway Counting

Three Card Problem

Three cards: Red/Red, Red/Black, Black/Black.
Pick one at random and place on the table. The upturned side is a
Red. What is the probability that the other side is Black?
Can’t be the BB card, so...prob should be 0.5, right?
R: upturned card is Red; RB: the Red/Black card was selected.
Want P(RB|R).
What’s wrong with the reasoning that leads to 1

2?

P(RB|R) =
P(RB ∩ R)

P(R)

=
1
3
1
2

1
3(1) + 1

3
1
2 + 1

3(0)

=
1
6
1
2

=
1

3

Once you are given R: it is twice as likely that the RR card was
picked.

4



Gambler’s fallacy.

Flip a fair coin 51 times.

A = “first 50 flips are heads”
B = “the 51st is heads”
Pr [B|A] ?

A = {HH · · ·HT ,HH · · ·HH}
B∩A = {HH · · ·HH}
Uniform probability space.

Pr [B|A] = |B∩A|
|A| = 1

2 .

Same as Pr [B].

The likelihood of 51st heads does not depend on the previous flips.
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Product Rule

Recall the definition:

Pr [B|A] =
Pr [A∩B]

Pr [A]
.

Hence,
Pr [A∩B] = Pr [A]Pr [B|A].

Consequently,

Pr [A∩B∩C] = Pr [(A∩B)∩C]

= Pr [A∩B]Pr [C|A∩B]

= Pr [A]Pr [B|A]Pr [C|A∩B].
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Product Rule

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1∩·· ·∩An−1].

Proof: By induction.
Assume the result is true for n. (It holds for n = 2.) Then,

Pr [A1∩·· ·∩An ∩An+1]

= Pr [A1∩·· ·∩An]Pr [An+1|A1∩·· ·∩An]

= Pr [A1]Pr [A2|A1] · · ·Pr [An|A1∩·· ·∩An−1]Pr [An+1|A1∩·· ·∩An],

so that the result holds for n + 1.
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Correlation

An example.

Random experiment: Pick a person at random.
Event A: the person has lung cancer.
Event B: the person is a heavy smoker.

Fact:
Pr [A|B] = 1.17×Pr [A].

Conclusion:

I Smoking increases the probability of lung cancer by 17%.
I Smoking causes lung cancer.
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Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.

I Lung cancer causes smoking. Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking.

Really?



Correlation

Event A: the person has lung cancer. Event B: the person is a
heavy smoker. Pr [A|B] = 1.17×Pr [A].

A second look.

Note that

Pr [A|B] = 1.17×Pr [A] ⇔ Pr [A∩B]

Pr [B]
= 1.17×Pr [A]

⇔ Pr [A∩B] = 1.17×Pr [A]Pr [B]

⇔ Pr [B|A] = 1.17×Pr [B].

Conclusion:

I Lung cancer increases the probability of smoking by 17%.
I Lung cancer causes smoking. Really?



Causality vs. Correlation
Events A and B are positively correlated if

Pr [A∩B] > Pr [A]Pr [B].

(E.g., smoking and lung cancer.)

A and B being positively correlated does not mean that A
causes B or that B causes A.

Other examples:

I Tesla owners are more likely to be rich. That does not
mean that poor people should buy a Tesla to get rich.

I People who go to the opera are more likely to have a good
career. That does not mean that going to the opera will
improve your career.

I Rabbits eat more carrots and do not wear glasses. Are
carrots good for eyesight?
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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An∩B for n = 1, . . . ,N.
Thus,

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].
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Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B] + Pr [Ā∩B] = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.
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Now,
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1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]
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Now,
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Now,
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Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

I When rolling two dice, A = sum is 7 and B = red die is 1
are independent;

I When rolling two dice, A = sum is 3 and B = red die is 1
are not independent;

I When flipping coins, A = coin 1 yields heads and B = coin
2 yields tails are independent;

I When throwing 3 balls into 3 bins, A = bin 1 is empty and
B = bin 2 is empty are not independent;
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Independence and conditional probability

Fact: Two events A and B are independent if and only if

Pr [A|B] = Pr [A].

Indeed: Pr [A|B] = Pr [A∩B]
Pr [B] , so that

Pr [A|B] = Pr [A]⇔ Pr [A∩B]

Pr [B]
= Pr [A]⇔ Pr [A∩B] = Pr [A]Pr [B].
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Bayes Rule
Another picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An
and B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred,
there are 100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.



Bayes Rule
Another picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An
and B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred,
there are 100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.



Bayes Rule
Another picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An
and B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred,
there are 100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.



Bayes Rule
Another picture: We imagine that there are N possible causes
A1, . . . ,AN .

Imagine 100 situations, among which 100pnqn are such that An
and B occur, for n = 1, . . . ,N.
Thus, among the 100∑m pmqm situations where B occurred,
there are 100pnqn where An occurred.

Hence,
Pr [An|B] =

pnqn

∑m pmqm
.



Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8×1

0.15×0.80+10−8×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8×1+0.85×0.1
≈ 0.42

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Bayes’ Rule Operations

Bayes’ Rule is the canonical example of how information
changes our opinions.
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Thomas Bayes

Source: Wikipedia.



Thomas Bayes

A Bayesian picture of Thomas Bayes.



Testing for disease.

Let’s watch TV!!

Random Experiment: Pick a random male.
Outcomes: (test ,disease)
A - prostate cancer.
B - positive PSA test.

I Pr [A] = 0.0016, (.16 % of the male population is affected.)
I Pr [B|A] = 0.80 (80% chance of positive test with disease.)
I Pr [B|A] = 0.10 (10% chance of positive test without

disease.)

From http://www.cpcn.org/01 psa tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr [A|B]???
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Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10

= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80 + 0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.



Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

I Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

I Independence: Pr [A∩B] = Pr [A]Pr [B].
I Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

I All these are possible:
Pr [A|B] < Pr [A];Pr [A|B] > Pr [A];Pr [A|B] = Pr [A].
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