Balls in Bins.
Random Variables.
Balls in bins

One throws m balls into $n > m$ bins.
Balls in bins

One throws \(m \) balls into \(n > m \) bins.

Theorem:
\[Pr[\text{no collision}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}, \text{ for large enough } n. \]
Balls in bins

Theorem:

\[Pr[\text{no collision}] \approx \exp\left\{ -\frac{m^2}{2n} \right\}, \text{ for large enough } n. \]
Theorem:
$Pr[\text{no collision}] \approx \exp\left\{- \frac{m^2}{2n}\right\}$, for large enough n.

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,
\[
m \approx \sqrt{2 \ln(2)} n \approx 1.2\sqrt{n}.
\]

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[\text{collision}] \approx 1/2$ for $m = \sqrt{n}$. ($e^{-0.5} \approx 0.6.$)
The Calculation.

\(A_i = \text{no collision when } i\text{th ball is placed in a bin.} \)

\[Pr[A_i|A_{i-1} \cap \cdots \cap A_1] = (1 - \frac{i-1}{n}) \]

no collision = \(A_1 \cap \cdots \cap A_m \).

Product rule:

\[Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}] \]

\[\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right). \]

Hence,

\[\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} \left(- \frac{k}{n}\right) \]

\[= -\frac{1}{n} \frac{m(m-1)}{2} \]

\[\approx -\frac{m^2}{2n} \]

\((*)\) We used \(\ln(1 - \varepsilon) \approx -\varepsilon \) for \(|\varepsilon| \ll 1 \).

\((†)\) \(1 + 2 + \cdots + m - 1 = (m - 1)m/2. \)
Approximation

\[\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \cdots \approx 1 - x, \text{ for } |x| \ll 1. \]

Hence, \(-x \approx \ln(1 - x) \) for \(|x| \ll 1 \).
Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With $n = 365$, one finds

$$Pr[\text{collision}] \approx \frac{1}{2} \text{ if } m \approx 1.2\sqrt{365} \approx 23.$$

If $m = 60$, we find that

$$Pr[\text{no collision}] \approx \exp\left\{-\frac{m^2}{2n}\right\} = \exp\left\{-\frac{60^2}{2 \times 365}\right\} \approx 0.007.$$

If $m = 366$, then $Pr[\text{no collision}] = 0$. (No approximation here!)
Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for $\Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \geq 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.
We know $\Pr[\text{no collision}] \approx \exp\{ -m^2/(2n) \} \approx 1 - m^2/(2n)$.
Hence,

$$\Pr[\text{no collision}] \approx 1 - 10^{-3} \iff m^2/(2n) \approx 10^{-3}$$

$$\iff 2n \approx m^2 10^3 \iff 2^{b+1} \approx m^2 2^{10}$$

$$\iff b + 1 \approx 10 + 2 \log_2(m) \approx 10 + 2.9 \ln(m).$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.
Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$

(b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}$.
Event $A_m = \text{‘fail to get Brian Wilson in } m \text{ cereal boxes’}$

Fail the first time: $(1 - \frac{1}{n})$
Fail the second time: $(1 - \frac{1}{n})$
And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \cdots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$\ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx \exp\left\{-\frac{m}{n}\right\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.
Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: $E_k = \text{‘fail to get player } k\text{’}$, for $k = 1, \ldots, n$

Probability of failing to get at least one of these n players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate p? **Union Bound:**

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}.$$
Collect all cards?

Thus,

$$Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$$

Hence,

$$Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n \ln\left(\frac{n}{p}\right).$$

To get $p = 1/2$, set $m = n \ln (2n)$.

$$(p \leq ne^{-\frac{m}{n}} \leq ne^{-\ln(n/p)} \leq n(\frac{p}{n}) \leq p.)$$

E.g., $n = 10^2 \Rightarrow m = 530; n = 10^3 \Rightarrow m = 7600.$
Quick Review.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

- **Bayes’ Rule:** \(Pr[A_m|B] = \frac{p_m q_m}{p_1 q_1 + \cdots + p_M q_M} \).

- **Product Rule:**
 \[
 Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1] Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].
 \]

- **Balls in bins:** \(m \) balls into \(n > m \) bins.
 \[
 Pr[\text{no collisions}] \approx \exp\left\{-\frac{m^2}{2n}\right\}
 \]

- **Coupon Collection:** \(n \) items. Buy \(m \) cereal boxes.
 \[
 Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; \quad Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.
 \]

Key Mathematical Fact: \(\ln(1 - \varepsilon) \approx -\varepsilon \).
1. Random Variables.
2. Expectation
3. Distributions.
Questions about outcomes ...

Experiment: roll two dice.
Sample Space: \{(1, 1), (1, 2), \ldots, (6, 6)\} = \{1, \ldots, 6\}^2
How many pips?

Experiment: flip 100 coins.
Sample Space: \{HHH \cdots H, \ HHH \cdots H, \ldots, TTT \cdots T\}
How many heads in 100 coin tosses?

Experiment: choose a random student in cs70.
Sample Space: \{Adam, Jin, Bing, \ldots, Angeline\}
What midterm score?

Experiment: hand back assignments to 3 students at random.
Sample Space: \{123, 132, 213, 231, 312, 321\}
How many students get back their own assignment?

In each scenario, each outcome gives a number.
The number is a (known) function of the outcome.
Random Variables.

A random variable, X, for an experiment with sample space Ω is a function $X : \Omega \rightarrow \mathbb{R}$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω.

The function $X(\cdot)$ is not random, not a variable!

What varies at random (from experiment to experiment)? The outcome!
Example 1 of Random Variable

Experiment: roll two dice.
Sample Space: \{ (1, 1), (1, 2), \ldots, (6, 6) \} = \{1, \ldots, 6\}^2
Random Variable X: number of pips.
$X(1, 1) = 2$
$X(1, 2) = 3,$
\vdots
$X(6, 6) = 12,$
$X(a, b) = a + b, (a, b) \in \Omega.$
Example 2 of Random Variable

Experiment: flip three coins
Sample Space: \{HHH, THH, HTH, TTH, HHT, THT, HTT, TTT\}
Winnings: if win 1 on heads, lose 1 on tails: \(X\)
\[
X(\text{HHH}) = 3 \quad X(\text{THH}) = 1 \quad X(\text{HTH}) = 1 \quad X(\text{TTH}) = -1 \\
X(\text{HHT}) = 1 \quad X(\text{THT}) = -1 \quad X(\text{HTT}) = -1 \quad X(\text{TTT}) = -3
\]
Number of pips in two dice.

“What is the likelihood of getting n pips?”

$Pr[X = 10] = 3/36 = Pr[X^{-1}(10)]; Pr[X = 8] = 5/36 = Pr[X^{-1}(8)].$
The probability of X taking on a value a.

Definition: The distribution of a random variable X, is
\[\{(a, Pr[X = a]) : a \in \mathcal{A} \} \], where \mathcal{A} is the range of X.

\[Pr[X = a] := Pr[X^{-1}(a)] \] where $X^{-1}(a) := \{ \omega \mid X(\omega) = a \}$.
Handing back assignments

Experiment: hand back assignments to 3 students at random.
Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$
How many students get back their own assignment?
Random Variable: values of $X(\omega)$: $\{3, 1, 1, 0, 0, 1\}$

Distribution:

$$X = \begin{cases}
0, & \text{w.p. } 1/3 \\
1, & \text{w.p. } 1/2 \\
3, & \text{w.p. } 1/6
\end{cases}$$
Flip three coins

Experiment: flip three coins
Sample Space: \{HHH, THH, HTH, TTH, HHT, THT, HTT, TTT\}
Winnings: if win 1 on heads, lose 1 on tails. \(X\)
Random Variable: \{3, 1, 1, −1, 1, −1, −1, −3\}

Distribution:

\[
X = \begin{cases}
-3, & \text{w. p. } 1/8 \\
-1, & \text{w. p. } 3/8 \\
1, & \text{w. p. } 3/8 \\
3 & \text{w. p. } 1/8
\end{cases}
\]
Number of pips.

Experiment: roll two dice.
Expectation.

How did people do on the midterm?

Distribution.

Summary of distribution?

Average!
Expectation - Definition

Definition: The expected value of a random variable X is

$$E[X] = \sum_a a \times Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1 + \cdots + X_N}{N} \approx E[X].$$

That is indeed the case, in the same way that the fraction of times that $X = x$ approaches $Pr[X = x]$.

This (nontrivial) result is called the **Law of Large Numbers**.

The subjectivist (bayesian) interpretation of $E[X]$ is less obvious.
Expectation: A Useful Fact

Theorem:

\[E[X] = \sum_{\omega} X(\omega) \times Pr[\omega]. \]

Proof:

\[
E[X] = \sum_{a} a \times Pr[X = a] \\
= \sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega] \\
= \sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega] \\
= \sum_{\omega} X(\omega) Pr[\omega]
\]

Distributive property of multiplication over addition.
An Example

Flip a fair coin three times.

\[\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}. \]

\(X = \text{number of } H\text{’s}: \{3, 2, 2, 2, 1, 1, 1, 0\}. \)

Thus,

\[
\sum_{\omega} X(\omega) Pr[\omega] = \{3 + 2 + 2 + 2 + 1 + 1 + 1 + 0\} \times \frac{1}{8}.
\]

Also,

\[
\sum_{a} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.
\]

What’s the answer? Uh.... \(\frac{3}{2} \)
Expectation and Average.

There are \(n \) students in the class;

\(X(m) = \text{score of student } m, \text{ for } m = 1, 2, \ldots, n. \)

“Average score” of the \(n \) students: add scores and divide by \(n \):

\[
\text{Average} = \frac{X(1) + X(1) + \cdots + X(n)}{n}.
\]

Experiment: choose a student uniformly at random.
Uniform sample space: \(\Omega = \{1, 2, \cdots, n\}, \Pr[\omega] = 1/n, \text{ for all } \omega. \)
Random Variable: midterm score: \(X(\omega). \)
Expectation:

\[
E(X) = \sum_{\omega} X(\omega) \Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.
\]

Hence,

\[
\text{Average} = E(X).
\]

This holds for a uniform probability space.
Named Distributions.

Some distributions come up over and over again.
...like “choose” or “stars and bars”....
Let’s cover some.
The binomial distribution.

Flip \(n \) coins with heads probability \(p \).

Random variable: number of heads.

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

How many sample points in event “\(X = i \)”?

\(i \) heads out of \(n \) coin flips \(\implies \binom{n}{i} \)

What is the probability of \(\omega \) if \(\omega \) has \(i \) heads?

Probability of heads in any position is \(p \).

Probability of tails in any position is \((1 - p) \).

So, we get

\[
Pr[\omega] = p^i (1 - p)^{n-i}.
\]

Probability of “\(X = i \)” is sum of \(Pr[\omega] \), \(\omega \in “X = i” \).

\[
Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}, i = 0, 1, \ldots, n : B(n, p) \text{ distribution}
\]
The binomial distribution.

\[
\begin{align*}
\binom{n}{m} \text{ outcomes with } m \text{ Hs and } n-m \text{ Ts} \\
\Rightarrow Pr[X = m] &= \binom{n}{m}p^m(1-p)^{n-m}
\end{align*}
\]
A packet is corrupted with probability p. Send $n + 2k$ packets. Probability of at most k corruptions.

$$\sum_{i \leq k} \binom{n + 2k}{i} p^i (1 - p)^{n+2k-i}.$$

Also distribution in polling, experiments, etc.
Expectation of Binomial Distribution

Parameter p and n. What is expectation?

$$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}, i = 0, 1, \ldots, n : B(n, p) \text{ distribution}$$

$$E[X] = \sum_i i \times Pr[X = i].$$

Uh oh? Well... It is pn.

Proof? After linearity of expectation this is easy.

Waiting is good.
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or $\omega_2 = T \ H$, or $\omega_3 = T \ T \ H$, or $\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also,

$$Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1.$$
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
The Geometric Distribution

The probability of observing a success on the nth trial, given the probability of success p, is given by

$$Pr[X = n] = (1 - p)^{n-1}p, \quad n \geq 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.$$

Now, if $|a| < 1$, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

$$aS = a + a^2 + a^3 + a^4 + \cdots$$

$$(1 - a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} = 1.$$
Geometric Distribution: Expectation

\(X \overset{D}{=} G(p) \), i.e., \(\Pr[X = n] = (1 - p)^{n-1}p, n \geq 1 \).

One has

\[
E[X] = \sum_{n=1}^{\infty} n \Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]

by subtracting the previous two identities

\[
= \sum_{n=1}^{\infty} \Pr[X = n] = 1.
\]

Hence,

\[
E[X] = \frac{1}{p}.
\]
Poisson

Experiment: flip a coin n times. The coin is such that
$Pr[H] = \lambda / n$.
Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”
Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”

We expect \(X \ll n \). For \(m \ll n \) one has

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \quad \text{with} \quad p = \lambda / n
\]

\[
= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
= \frac{n(n-1) \cdots (n-m+1) \lambda^m}{m!} \frac{1}{n^m} \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx (1) \quad \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \quad \approx (2) \quad \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.
\]

For (1) we used \(m \ll n \); for (2) we used \((1 - a/n)^n \approx e^{-a}\).
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$

Fact: $E[X] = \lambda.$

Proof:

\[
E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!} \\
= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} \\
= e^{-\lambda} \lambda e^\lambda = \lambda.
\]
The Poisson distribution is named after:
The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.
Random Variables

- A random variable X is a function $X : \Omega \rightarrow \mathbb{R}$.
- $\Pr[X = a] := \Pr[X^{-1}(a)] = \Pr[\{\omega | X(\omega) = a\}]$.
- $\Pr[X \in A] := \Pr[X^{-1}(A)]$.
- The distribution of X is the list of possible values and their probability: $\{(a, \Pr[X = a]) | a \in \mathcal{A}\}$.
- $E[X] := \sum_a a\Pr[X = a]$.
- Expectation is Linear.
- $B(n, p)$, $U[1 : n]$, $G(p)$, $P(\lambda)$.