Today

Balls in Bins.

Random Variables.

One throws m balls into n > m bins.

One throws m balls into n > m bins.

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}\$, for large enough n.

In particular, $Pr[\text{no collision}] \approx 1/2 \text{ for } m^2/(2n) \approx \ln(2), \text{ i.e.,}$

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}$$
.

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[\text{collision}] \approx 1/2 \text{ for } m = \sqrt{n}. \ (e^{-0.5} \approx 0.6.)$

The Calculation.

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$$

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1]\cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right)\cdots\left(1 - \frac{m-1}{n}\right).$$

Hence,

In(
$$Pr[\text{no collision}]$$
) = $\sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{\binom{*}{*}}$
 = $-\frac{1}{n} \frac{m(m-1)}{2}^{\binom{\dagger}{*}} \approx -\frac{m^2}{2n}$

- (*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$.
- (†) $1+2+\cdots+m-1=(m-1)m/2$.

Approximation

$$\exp\{-x\} = 1 - x + \frac{1}{2!}x^2 + \dots \approx 1 - x$$
, for $|x| \ll 1$.

Hence, $-x \approx \ln(1-x)$ for $|x| \ll 1$.

Today's your birthday, it's my birthday too..

Probability that m people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2 \text{ if } m \approx 1.2\sqrt{365} \approx 23.$

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)

Checksums!

Consider a set of *m* files.

Each file has a checksum of b bits.

How large should b be for $Pr[\text{share a checksum}] \leq 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.

We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow \textit{m}^2/(2\textit{n}) \approx 10^{-3} \\ & \Leftrightarrow 2\textit{n} \approx \textit{m}^2 10^3 \Leftrightarrow 2^{\textit{b}+1} \approx \textit{m}^2 2^{10} \\ & \Leftrightarrow \textit{b}+1 \approx 10 + 2\log_2(\textit{m}) \approx 10 + 2.9\ln(\textit{m}). \end{aligned}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)
One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}$.

Coupon Collector Problem: Analysis.

Event A_m = 'fail to get Brian Wilson in m cereal boxes'

Fail the first time: $(1 - \frac{1}{n})$

Fail the second time: $(1 - \frac{1}{n})$

And so on ... for m times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$

$$= (1 - \frac{1}{n})^m$$

$$In(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69 n$ boxes.

Collect all cards?

Experiment: Choose *m* cards at random with replacement.

Events: E_k = 'fail to get player k', for k = 1, ..., n

Probability of failing to get at least one of these *n* players:

$$p := Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

$$p = Pr[E_1 \cup E_2 \cdots \cup E_n] \leq Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}$$
.

Collect all cards?

Thus,

 $Pr[\text{missing at least one card}] \leq ne^{-\frac{m}{n}}.$

Hence,

 $Pr[\text{missing at least one card}] \leq p \text{ when } m \geq n \ln(\frac{n}{p}).$

To get
$$p = 1/2$$
, set $m = n \ln{(2n)}$.
 $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln{(n/p)}} \le n(\frac{p}{n}) \le p$.)
E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

Quick Review.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- ▶ Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \cdots + p_M q_M)$.
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- ▶ Balls in bins: m balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

► Coupon Collection: *n* items. Buy *m* cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Key Mathematical Fact: $ln(1-\varepsilon) \approx -\varepsilon$.

Random Variables

Random Variables

- 1. Random Variables.
- 2. Expectation
- 3. Distributions.

Questions about outcomes ...

```
Experiment: roll two dice.
```

Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\}=\{1,\ldots,6\}^2$

How many pips?

Experiment: flip 100 coins.

Sample Space: $\{HHH\cdots H, THH\cdots H, \dots, TTT\cdots T\}$

How many heads in 100 coin tosses?

Experiment: choose a random student in cs70.

Sample Space: { Adam, Jin, Bing, ..., Angeline}

What midterm score?

Experiment: hand back assignments to 3 students at random.

Sample Space: {123,132,213,231,312,321}

How many students get back their own assignment?

In each scenario, each outcome gives a number.

The number is a (known) function of the outcome.

Random Variables.

A **random variable**, X, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω .

The function $X(\cdot)$ is not random, not a variable!

What varies at random (from experiment to experiment)? The outcome!

Example 1 of Random Variable

```
Experiment: roll two dice. Sample Space: \{(1,1),(1,2),\dots,(6,6)\}=\{1,\dots,6\}^2 Random Variable X: number of pips. X(1,1)=2 X(1,2)=3, \vdots X(6,6)=12, X(a,b)=a+b,(a,b)\in\Omega.
```

Example 2 of Random Variable

```
Experiment: flip three coins

Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT}

Winnings: if win 1 on heads, lose 1 on tails: X

X(HHH) = 3
X(THH) = 1
X(HTH) = 1
X(TTH) = -1
X(HHT) = -1
X(TTT) = -3
```

Number of pips in two dice.

"What is the likelihood of getting *n* pips?"

$$Pr[X=10] = 3/36 = Pr[X^{-1}(10)]; Pr[X=8] = 5/36 = Pr[X^{-1}(8)].$$

Distribution

The probability of *X* taking on a value *a*.

Definition: The **distribution** of a random variable X, is $\{(a, Pr[X = a]) : a \in \mathcal{A}\}$, where \mathcal{A} is the range of X.

$$Pr[X = a] := Pr[X^{-1}(a)] \text{ where } X^{-1}(a) := \{\omega \mid X(\omega) = a\}.$$

Handing back assignments

Experiment: hand back assignments to 3 students at random.

Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega)$: $\{3, 1, 1, 0, 0, 1\}$

Distribution:

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 1/2 \\ 3, & \text{w.p. } 1/6 \end{cases}$$

Flip three coins

Experiment: flip three coins

Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT}

Winnings: if win 1 on heads, lose 1 on tails. X Random Variable: $\{3,1,1,-1,1,-1,-1,-3\}$

Distribution:

$$X = \begin{cases} -3, & \text{w. p. } 1/8 \\ -1, & \text{w. p. } 3/8 \\ 1, & \text{w. p. } 3/8 \\ 3 & \text{w. p. } 1/8 \end{cases}$$

Number of pips.

Experiment: roll two dice.

Expectation.

How did people do on the midterm?

Distribution.

Summary of distribution?

Average!

Expectation - Definition

Definition: The **expected value** of a random variable *X* is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1+\cdots+X_N}{N}\approx E[X].$$

That is indeed the case, in the same way that the fraction of times that X = x approaches Pr[X = x].

This (nontrivial) result is called the Law of Large Numbers.

The subjectivist(bayesian) interpretation of E[X] is less obvious.

Expectation: A Useful Fact

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Proof:

$$E[X] = \sum_{a} a \times Pr[X = a]$$

$$= \sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

$$= \sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

$$= \sum_{\omega} X(\omega) Pr[\omega]$$

Distributive property of multiplication over addition.

An Example

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

$$X = \text{number of } H$$
's: $\{3,2,2,2,1,1,1,0\}$.

Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

What's the answer? Uh.... $\frac{3}{2}$

Expectation and Average.

There are *n* students in the class;

$$X(m)$$
 = score of student m , for $m = 1, 2, ..., n$.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \cdots + X(n)}{n}.$$

Experiment: choose a student uniformly at random.

Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω .

Random Variable: midterm score: $X(\omega)$.

Expectation:

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$$

Hence,

Average
$$= E(X)$$
.

This holds for a uniform probability space.

Named Distributions.

Some distributions come up over and over again.

...like "choose" or "stars and bars"....

Let's cover some.

The binomial distribution.

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips $\implies \binom{n}{i}$

What is the probability of ω if ω has i heads? Probability of heads in any position is p. Probability of tails in any position is (1-p). So, we get

$$Pr[\omega] = p^i (1-p)^{n-i}$$
.

Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ".

$$Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0, 1, \dots, n : B(n, p)$$
 distribution

The binomial distribution.

Error channel and...

A packet is corrupted with probability p.

Send n+2k packets.

Probability of at most *k* corruptions.

$$\sum_{j\leq k} \binom{n+2k}{j} p^j (1-p)^{n+2k-j}.$$

Also distribution in polling, experiments, etc.

Expectation of Binomial Distibution

Parameter *p* and *n*. What is expectation?

$$Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0, 1, \dots, n : B(n, p)$$
 distribution

$$E[X] = \sum_{i} i \times Pr[X = i].$$

Uh oh? Well... It is pn.

Proof? After linearity of expectation this is easy.

Waiting is good.

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Geometric Distribution

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1-p)^{n-1}p, \ n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \, \frac{1}{1 - (1 - p)} = 1.$$

Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1-p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=0}^{\infty} Pr[X=n] = 1.$$

Hence,

$$E[X] = \frac{1}{p}$$
.

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}$.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Simeon Poisson

The Poisson distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.

Summary

Random Variables

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- $ightharpoonup E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.
- ► $B(n,p), U[1:n], G(p), P(\lambda).$