

Balls in Bins.

Balls in Bins. Random Variables.

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

One throws *m* balls into n > m bins.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem:

 $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

 $m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$. Roughly, *Pr*[collision] $\approx 1/2$ for $m = \sqrt{n}$.

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[\text{no collision}] \approx 1/2$ for $m^2/(2n) \approx \ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$. Roughly, *Pr*[collision] $\approx 1/2$ for $m = \sqrt{n}$. ($e^{-0.5} \approx 0.6$.)

 A_i = no collision when *i*th ball is placed in a bin.

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \dots \cap A_m$.

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1}\cap\cdots\cap A_1]=(1-\frac{i-1}{n}).$$

no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

 $Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$$

no collision = $A_1 \cap \dots \cap A_m$.
Product rule:

$$Pr[A_1 \cap \cdots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \cdots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$$

no collision = $A_1 \cap \dots \cap A_m$.
Product rule:
$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

).

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1-\frac{k}{n})$$

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$$

no collision = $A_1 \cap \dots \cap A_m$.
Product rule:
$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1-\frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$

).

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$$

no collision = $A_1 \cap \dots \cap A_m$.
Product rule:
$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx$$

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_{i}|A_{i-1} \cap \dots \cap A_{1}] = (1 - \frac{i-1}{n}).$$

no collision = $A_{1} \cap \dots \cap A_{m}$.
Product rule:
$$Pr[A_{1} \cap \dots \cap A_{m}] = Pr[A_{1}]Pr[A_{2}|A_{1}] \cdots Pr[A_{m}|A_{1} \cap \dots \cap A_{m-1}]$$
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx -\frac{m^2}{2n}$$

).

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$$

no collision = $A_1 \cap \dots \cap A_m$.
Product rule:
$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx -\frac{m^2}{2n}$$

).

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$.

 A_i = no collision when *i*th ball is placed in a bin.

$$Pr[A_i|A_{i-1} \cap \dots \cap A_1] = (1 - \frac{i-1}{n}).$$

no collision = $A_1 \cap \dots \cap A_m$.
Product rule:
$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$
$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)^{(\dagger)}}{2} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$. (†) $1+2+\cdots+m-1 = (m-1)m/2$.

Approximation

Approximation

Approximation

Probability that *m* people all have different birthdays?

Probability that *m* people all have different birthdays? With n = 365, one finds

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] =

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$.

If m = 60, we find that

$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)
Consider a set of *m* files.

Consider a set of m files. Each file has a checksum of b bits.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

```
Claim: b \ge 2.9 \ln(m) + 9.
```

Proof:

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums.

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^{b}$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^{2}/(2n)\}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

 $Pr[\text{no collision}] \approx 1 - 10^{-3}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

 $Pr[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3}$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

$$\begin{aligned} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$$

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for $Pr[\text{share a checksum}] \le 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[\text{no collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{aligned} & \operatorname{Pr}[\operatorname{no \ collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{aligned}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem:

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...) One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

(a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...) One random baseball card in each cereal box.

Theorem: If you buy *m* boxes,

- (a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$
- (b) $Pr[\text{miss any one of the items}] \le ne^{-\frac{m}{n}}$.

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes'

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$

$$Pr[A_m] = (1-\frac{1}{n}) \times \cdots \times (1-\frac{1}{n})$$

$$Pr[A_m] = (1-\frac{1}{n}) \times \cdots \times (1-\frac{1}{n})$$
$$= (1-\frac{1}{n})^m$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$ And so on ... for *m* times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m \ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.

Collect all cards?

Experiment: Choose *m* cards at random with replacement.

Collect all cards?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n
Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

 $p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p:=\Pr[E_1\cup E_2\cdots\cup E_n]$$

How does one estimate *p*?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p := \Pr[E_1 \cup E_2 \cdots \cup E_n]$$

How does one estimate *p*? Union Bound:

 $\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p:=\Pr[E_1\cup E_2\cdots\cup E_n]$$

How does one estimate *p*? Union Bound:

$$\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

$$p:=\Pr[E_1\cup E_2\cdots\cup E_n]$$

How does one estimate *p*? Union Bound:

$$\rho = \Pr[E_1 \cup E_2 \cdots \cup E_n] \leq \Pr[E_1] + \Pr[E_2] \cdots \Pr[E_n].$$

$$Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$$

Plug in and get

$$p \leq ne^{-\frac{m}{n}}$$
.

Thus,

 $Pr[missing at least one card] \le ne^{-\frac{m}{n}}.$

Thus,

$$Pr[missing at least one card] \leq ne^{-\frac{m}{n}}.$$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

Thus,

$$Pr[missing at least one card] \leq ne^{-\frac{m}{n}}.$$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$.

Thus,

$$Pr[missing at least one card] \leq ne^{-\frac{m}{n}}$$
.

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p.)$

Thus,

$$\Pr[\text{missing at least one card}] \le ne^{-\frac{m}{n}}.$$

Hence,

 $Pr[missing at least one card] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p$.) E.g., $n = 10^2 \Rightarrow m = 530$;

Thus,

$$Pr[missing at least one card] \leq ne^{-\frac{m}{n}}$$
.

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get
$$p = 1/2$$
, set $m = n \ln (2n)$.
 $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p$.)
E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

• Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M)$.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- Product Rule:

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-rac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[miss one specific item] \approx e^{-\frac{m}{n}};$

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Key Mathematical Fact:

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- Balls in bins: *m* balls into n > m bins.

$$Pr[\text{no collisions}] \approx \exp\{-\frac{m^2}{2n}\}$$

Coupon Collection: n items. Buy m cereal boxes.

 $Pr[\text{miss one specific item}] \approx e^{-\frac{m}{n}}; Pr[\text{miss any one of the items}] \leq ne^{-\frac{m}{n}}.$

Key Mathematical Fact: $\ln(1-\varepsilon) \approx -\varepsilon$.

Random Variables

Random Variables

Random Variables

Random Variables

- 1. Random Variables.
- 2. Expectation
- 3. Distributions.

Experiment: roll two dice.

Experiment: roll two dice. Sample Space: $\{(1,1), (1,2), \dots, (6,6)\} = \{1, \dots, 6\}^2$

Experiment: roll two dice. Sample Space: $\{(1, 1), (1, 2), \dots, (6, 6)\} = \{1, \dots, 6\}^2$ How many pips?

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins.

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H, THH \cdots H, \dots, TTT \cdots T$ }

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H$, $THH \cdots H$,..., $TTT \cdots T$ } How many heads in 100 coin tosses?

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: $\{HHH \cdots H, THH \cdots H, \dots, TTT \cdots T\}$ How many heads in 100 coin tosses?

Experiment: choose a random student in cs70.

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: $\{HHH \cdots H, THH \cdots H, \dots, TTT \cdots T\}$ How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*}

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: $\{HHH \cdots H, THH \cdots H, \dots, TTT \cdots T\}$ How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*} What midterm score?

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H, THH \cdots H, \ldots, TTT \cdots T$ } How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*} What midterm score?

Experiment: hand back assignments to 3 students at random.

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H, THH \cdots H, \ldots, TTT \cdots T$ } How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*} What midterm score?

Experiment: hand back assignments to 3 students at random. Sample Space: {123,132,213,231,312,321}

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H, THH \cdots H, \ldots, TTT \cdots T$ } How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*} What midterm score?

Experiment: hand back assignments to 3 students at random. Sample Space: {123,132,213,231,312,321} How many students get back their own assignment?
Questions about outcomes ...

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H, THH \cdots H, \ldots, TTT \cdots T$ } How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*} What midterm score?

Experiment: hand back assignments to 3 students at random. Sample Space: {123,132,213,231,312,321} How many students get back their own assignment?

In each scenario, each outcome gives a number.

Questions about outcomes ...

Experiment: roll two dice. Sample Space: $\{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2$ How many pips?

Experiment: flip 100 coins. Sample Space: { $HHH \cdots H, THH \cdots H, \ldots, TTT \cdots T$ } How many heads in 100 coin tosses?

Experiment: choose a random student in cs70. Sample Space: {*Adam*, *Jin*, *Bing*,..., *Angeline*} What midterm score?

Experiment: hand back assignments to 3 students at random. Sample Space: {123,132,213,231,312,321} How many students get back their own assignment?

In each scenario, each outcome gives a number.

The number is a (known) function of the outcome.

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω .

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω . The function $X(\cdot)$ is not random,

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω . The function $X(\cdot)$ is not random, not a variable!

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω . The function $X(\cdot)$ is not random, not a variable! What varies at random (from experiment to experiment)?

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

The function $X(\cdot)$ is defined on the outcomes Ω .

The function $X(\cdot)$ is not random, not a variable!

What varies at random (from experiment to experiment)? The outcome!

Experiment: roll two dice.

Experiment: roll two dice. Sample Space: $\{(1,1), (1,2), \dots, (6,6)\} = \{1, \dots, 6\}^2$

```
Experiment: roll two dice.
Sample Space: \{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2
Random Variable X: number of pips.
X(1,1) = 2
```

```
Experiment: roll two dice.
Sample Space: \{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2
Random Variable X: number of pips.
X(1,1) = 2
X(1,2) = 3,
```

```
Experiment: roll two dice.
Sample Space: \{(1,1),(1,2),\ldots,(6,6)\} = \{1,\ldots,6\}^2
Random Variable X: number of pips.
X(1,1) = 2
X(1,2) = 3,
:
```

```
Experiment: roll two dice.
Sample Space: \{(1, 1), (1, 2), \dots, (6, 6)\} = \{1, \dots, 6\}^2
Random Variable X: number of pips.
X(1,1) = 2
X(1,2) = 3,
:
X(6,6) = 12,
X(a,b) =
```

```
Experiment: roll two dice.
Sample Space: \{(1, 1), (1, 2), \dots, (6, 6)\} = \{1, \dots, 6\}^2
Random Variable X: number of pips.
X(1, 1) = 2
X(1, 2) = 3,
:
X(6, 6) = 12,
X(a, b) = a + b, (a, b) \in \Omega.
```

Experiment: flip three coins

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*}

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: *X*

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1 X(HTH) = 1

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1 X(HTH) = 1 X(TTH) = -1

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1 X(HTH) = 1 X(TTH) = -1X(HHT) = 1

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1 X(HTH) = 1 X(TTH) = -1X(HHT) = 1 X(THT) = -1

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1 X(HTH) = 1 X(TTH) = -1X(HHT) = 1 X(THT) = -1 X(HTT) = -1

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails: XX(HHH) = 3 X(THH) = 1 X(HTH) = 1 X(TTH) = -1X(HHT) = 1 X(THT) = -1 X(TTT) = -3

"What is the likelihood of getting *n* pips?"

"What is the likelihood of getting *n* pips?"

"What is the likelihood of getting *n* pips?"

Pr[X = 10] =

"What is the likelihood of getting *n* pips?"

Pr[X = 10] = 3/36 =

"What is the likelihood of getting *n* pips?"

 $Pr[X=10] = 3/36 = Pr[X^{-1}(10)];$

"What is the likelihood of getting *n* pips?"

 $Pr[X = 10] = 3/36 = Pr[X^{-1}(10)]; Pr[X = 8] =$

"What is the likelihood of getting *n* pips?"

 $Pr[X = 10] = 3/36 = Pr[X^{-1}(10)]; Pr[X = 8] = 5/36 =$
Number of pips in two dice.

"What is the likelihood of getting *n* pips?"

 $Pr[X=10] = 3/36 = Pr[X^{-1}(10)]; Pr[X=8] = 5/36 = Pr[X^{-1}(8)].$

The probability of *X* taking on a value *a*.

The probability of *X* taking on a value *a*.

The probability of *X* taking on a value *a*.

The probability of *X* taking on a value *a*.

$$Pr[X = a] := Pr[X^{-1}(a)]$$
 where $X^{-1}(a) :=$

The probability of *X* taking on a value *a*.

$$Pr[X = a] := Pr[X^{-1}(a)]$$
 where $X^{-1}(a) := \{ \omega \mid X(\omega) = a \}.$

Experiment: hand back assignments to 3 students at random.

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment?

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p.} \\ \\ \end{cases}$$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ \\ \end{cases}$$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p.} \end{cases}$$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 1/2 \end{cases}$$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 1/2 \\ 3, & \text{w.p.} \end{cases}$$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 1/2 \\ 3, & \text{w.p. } 1/6 \end{cases}$$

Experiment: hand back assignments to 3 students at random. Sample Space: $\Omega = \{123, 132, 213, 231, 312, 321\}$ How many students get back their own assignment? Random Variable: values of $X(\omega) : \{3, 1, 1, 0, 0, 1\}$

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 1/2 \\ 3, & \text{w.p. } 1/6 \end{cases}$$

Experiment: flip three coins

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*}

Experiment: flip three coins Sample Space: {*HHH*, *THH*, *HTH*, *TTH*, *HHT*, *THT*, *HTT*, *TTT*} Winnings: if win 1 on heads, lose 1 on tails. *X*

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3,1,1,-1,1,-1,-3}

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3,1,1,-1,1,-1,-3}

$$X = \begin{cases} -3, & \text{w. p.} \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3,1,1,-1,1,-1,-3}

Distribution:

 $X = \begin{cases} -3, & \text{w. p. } 1/8 \\ \end{array}$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

$$X = \begin{cases} -3, & \text{w. p. } 1/8 \\ -1, & \text{w. p.} \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

$$X = \begin{cases} -3, & \text{w. p. } 1/8 \\ -1, & \text{w. p. } 3/8 \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

$$X = \begin{cases} -3, & \text{w. p. } 1/8\\ -1, & \text{w. p. } 3/8\\ 1, & \text{w. p.} \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

$$X = \begin{cases} -3, & \text{w. p. } 1/8 \\ -1, & \text{w. p. } 3/8 \\ 1, & \text{w. p. } 3/8 \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

$$X = \begin{cases} -3, & \text{w. p. } 1/8\\ -1, & \text{w. p. } 3/8\\ 1, & \text{w. p. } 3/8\\ 3 & \text{w. p.} \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3, 1, 1, -1, 1, -1, -3}

$$X = \begin{cases} -3, & \text{w. p. } 1/8\\ -1, & \text{w. p. } 3/8\\ 1, & \text{w. p. } 3/8\\ 3 & \text{w. p. } 1/8 \end{cases}$$

Experiment: flip three coins Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT} Winnings: if win 1 on heads, lose 1 on tails. *X* Random Variable: {3,1,1,-1,1,-1,-3}

$$X = \begin{cases} -3, & \text{w. p. 1/8} \\ -1, & \text{w. p. 3/8} \\ 1, & \text{w. p. 3/8} \\ 3 & \text{w. p. 1/8} \end{cases}$$

Number of pips.

Experiment: roll two dice.

Number of pips.

Experiment: roll two dice.

Expectation.

How did people do on the midterm?
How did people do on the midterm?

Distribution.

How did people do on the midterm?

Distribution.

Summary of distribution?

How did people do on the midterm?

Distribution.

Summary of distribution?

Average!

How did people do on the midterm?

Distribution.

Summary of distribution?

Average!

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

The expected value is also called the mean.

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1+\cdots+X_N}{N}\approx E[X].$$

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1+\cdots+X_N}{N}\approx E[X].$$

That is indeed the case, in the same way that the fraction of times that X = x approaches Pr[X = x].

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1+\cdots+X_N}{N}\approx E[X].$$

That is indeed the case, in the same way that the fraction of times that X = x approaches Pr[X = x].

This (nontrivial) result is called the Law of Large Numbers.

Definition: The expected value of a random variable X is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if X_1, \ldots, X_N are the successive values of the random variable, then

$$\frac{X_1+\cdots+X_N}{N}\approx E[X].$$

That is indeed the case, in the same way that the fraction of times that X = x approaches Pr[X = x].

This (nontrivial) result is called the Law of Large Numbers.

The subjectivist(bayesian) interpretation of E[X] is less obvious.

Theorem:

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

=
$$\sum_{\omega} X(\omega) Pr[\omega]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

=
$$\sum_{\omega} X(\omega) Pr[\omega]$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Proof:

$$E[X] = \sum_{a} a \times Pr[X = a]$$

=
$$\sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

=
$$\sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

=
$$\sum_{\omega} X(\omega) Pr[\omega]$$

Distributive property of multiplication over addition.

Flip a fair coin three times.

Flip a fair coin three times.

 $\Omega = \{ \textit{HHH}, \textit{HHT}, \textit{HTH}, \textit{THH}, \textit{HTT}, \textit{THT}, \textit{TTH}, \textit{TTT} \}.$

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3 + 2 + 2 + 2 + 1 + 1 + 1 + 0\} \times \frac{1}{8}.$$

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

What's the answer?

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

What's the answer? Uh....

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of *H*'s: {3,2,2,2,1,1,1,0}.

Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

What's the answer? Uh.... $\frac{3}{2}$

There are *n* students in the class;

There are *n* students in the class;

X(m) = score of student *m*, for m = 1, 2, ..., n.

There are *n* students in the class;

X(m) = score of student *m*, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

There are *n* students in the class;

X(m) = score of student *m*, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}.$$

Experiment: choose a student uniformly at random.

There are *n* students in the class;

X(m) = score of student *m*, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}.$$

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω .

There are *n* students in the class;

X(m) = score of student m, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}.$$

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω . Random Variable: midterm score: $X(\omega)$.

There are *n* students in the class;

X(m) = score of student m, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}.$$

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω . Random Variable: midterm score: $X(\omega)$. Expectation:

There are *n* students in the class;

X(m) = score of student m, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}.$$

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω . Random Variable: midterm score: $X(\omega)$. Expectation:

$$E(X) = \sum_{\omega} X(\omega) \Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$$
Expectation and Average.

There are *n* students in the class;

X(m) = score of student m, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}$$
.

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω . Random Variable: midterm score: $X(\omega)$. Expectation:

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$$

Hence,

Average
$$= E(X)$$
.

Expectation and Average.

There are *n* students in the class;

X(m) = score of student m, for m = 1, 2, ..., n.

"Average score" of the *n* students: add scores and divide by *n*:

Average =
$$\frac{X(1) + X(1) + \dots + X(n)}{n}$$
.

Experiment: choose a student uniformly at random. Uniform sample space: $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$, for all ω . Random Variable: midterm score: $X(\omega)$. Expectation:

$$E(X) = \sum_{\omega} X(\omega) \Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$$

Hence,

Average
$$= E(X)$$
.

This holds for a uniform probability space.

Named Distributions.

Some distributions come up over and over again.

Named Distributions.

Some distributions come up over and over again. ...like "choose" or "stars and bars"....

Named Distributions.

Some distributions come up over and over again.

...like "choose" or "stars and bars"

Let's cover some.

Flip *n* coins with heads probability *p*.

Flip *n* coins with heads probability *p*.

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"?

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies {n \choose i}$

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies \binom{n}{i}$

What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*.

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies \binom{n}{i}$

What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*. Probability of tails in any position is (1 - p).

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies {n \choose i}$

What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*. Probability of tails in any position is (1 - p). So, we get

$$Pr[\omega] = p^i$$

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies \binom{n}{i}$

What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*. Probability of tails in any position is (1 - p). So, we get

$$\Pr[\omega] = p^i (1-p)^{n-i}.$$

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies \binom{n}{i}$

What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*. Probability of tails in any position is (1 - p). So, we get

$$\Pr[\omega] = p^i (1-p)^{n-i}.$$

Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ".

$$Pr[X = i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

Error channel and...

A packet is corrupted with probability *p*.

A packet is corrupted with probability p. Send n+2k packets.

A packet is corrupted with probability *p*.

Send n+2k packets.

Probability of at most *k* corruptions.

A packet is corrupted with probability *p*.

Send n+2k packets.

Probability of at most *k* corruptions.

$$\sum_{i\leq k} \binom{n+2k}{i} p^i (1-p)^{n+2k-i}.$$

A packet is corrupted with probability *p*.

Send n+2k packets.

Probability of at most *k* corruptions.

$$\sum_{i< k} \binom{n+2k}{i} p^i (1-p)^{n+2k-i}.$$

Also distribution in polling, experiments, etc.

Parameter *p* and *n*. What is expectation?

Parameter *p* and *n*. What is expectation?

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

Parameter *p* and *n*. What is expectation?

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Parameter *p* and *n*. What is expectation?

$$Pr[X = i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Uh oh?

Parameter *p* and *n*. What is expectation?

$$Pr[X = i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Uh oh? Well...

Parameter *p* and *n*. What is expectation?

$$Pr[X = i] = {n \choose i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Uh oh? Well... It is pn.

Parameter *p* and *n*. What is expectation?

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Uh oh? Well... It is *pn*. Proof?

Parameter p and n. What is expectation?

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Uh oh? Well... It is pn.

Proof? After linearity of expectation this is easy.

Parameter p and n. What is expectation?

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n : B(n,p) \text{ distribution}$$

$$E[X] = \sum_{i} i \times \Pr[X = i].$$

Uh oh? Well... It is pn.

Proof? After linearity of expectation this is easy. Waiting is good.

Roll a six-sided balanced die. Let X be the number of pips (dots).

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, ..., 6\}$.

Roll a six-sided balanced die. Let *X* be the number of pips (dots). Then *X* is equally likely to take any of the values $\{1, 2, ..., 6\}$. We say that *X* is *uniformly distributed* in $\{1, 2, ..., 6\}$.
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m]$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n}$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, ..., n\}$ if Pr[X = m] = 1/n for m = 1, 2, ..., n. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}$$

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

 $\omega_1 = H, \text{ or }$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or

Let's flip a coin with Pr[H] = p until we get H.

For instance:

 $\omega_1 = H$, or $\omega_2 = T H$, or $\omega_3 = T T H$, or

Let's flip a coin with Pr[H] = p until we get H.

For instance:

 $\omega_1 = H$, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) =$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] =$$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or
 $\omega_2 = T H$, or
 $\omega_3 = T T H$, or
 $\omega_n = T T T T \cdots T H$

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1}$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n =$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$.

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

 $S = 1 + a + a^2 + a^3 + \cdots$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if $|a| < 1$, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

 $aS = a + a^2 + a^3 + a^4 + \cdots$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} \Pr[X_n] =$$

 \sim

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} \Pr[X_n] = p \ \frac{1}{1 - (1 - p)} =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} \Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} \Pr[X_n] = p \ \frac{1}{1-(1-p)} = 1.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.
One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots
$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$
$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots
$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$

by subtracting the previous two identities

by subtracting the previous two identities

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
$$pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots$$

by subtracting the previous two identities
$$\sum_{n=1}^{\infty} Pr[X = n]$$

$$= \sum_{n=1}^{\infty} \Pr[X=n] =$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p+ (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} Pr[X = n] = 1.$

$$= \sum_{n=1}^{\infty} \Pr[X=n] = 1$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots
pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots
by subtracting the previous two identities
= $\sum_{n=1}^{\infty} Pr[X = n] = 1.$

Hence,

$$E[X]=\frac{1}{p}.$$

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads.

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large *n*."

$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p =$

$$Pr[X = m] = {\binom{n}{m}}p^m(1-p)^{n-m}$$
, with $p = \lambda/n$

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$
$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

=
$$\frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

=
$$\frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n$$

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$;

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Simeon Poisson

The Poisson distribution is named after:

Simeon Poisson

The Poisson distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.

Summary

Random Variables

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

Summary

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

•
$$Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$$
Summary

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

•
$$Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$$

•
$$Pr[X \in A] := Pr[X^{-1}(A)].$$

► The distribution of X is the list of possible values and their probability: {(a, Pr[X = a]), a ∈ 𝒴}.

•
$$E[X] := \sum_a a Pr[X = a].$$

Summary

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

•
$$Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$$

•
$$Pr[X \in A] := Pr[X^{-1}(A)].$$

► The distribution of X is the list of possible values and their probability: {(a, Pr[X = a]), a ∈ 𝒴}.

•
$$E[X] := \sum_a a Pr[X = a].$$

Expectation is Linear.

Summary

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

•
$$Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$$

- $Pr[X \in A] := Pr[X^{-1}(A)].$
- ► The distribution of X is the list of possible values and their probability: {(a, Pr[X = a]), a ∈ 𝒴}.
- $E[X] := \sum_a a Pr[X = a].$
- Expectation is Linear.
- $\blacktriangleright B(n,p), U[1:n], G(p), P(\lambda).$