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The Calculation.
Ai = no collision when i th ball is placed in a bin.

Pr [Ai |Ai−1∩·· ·∩A1] = (1− i−1
n ).

no collision = A1∩·· ·∩Am.

Product rule:
Pr [A1∩·· ·∩Am] = Pr [A1]Pr [A2|A1] · · ·Pr [Am|A1∩·· ·∩Am−1]

⇒ Pr [no collision] =

(
1− 1

n

)
· · ·
(

1−m−1
n

)
.

Hence,

ln(Pr [no collision]) =
m−1

∑
k=1

ln(1− k
n

)≈
m−1

∑
k=1

(−k
n

) (∗)

= −1
n

m(m−1)

2

(†)

≈−m2

2n

(∗) We used ln(1− ε)≈−ε for |ε| � 1.
(†) 1 + 2 + · · ·+ m−1 = (m−1)m/2.
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Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?

With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] =

0. (No approximation here!)



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?
With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)



Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr [share a checksum]≤ 10−3?

Claim: b ≥ 2.9 ln(m) + 9.

Proof:

Let n = 2b be the number of checksums.
We know Pr [no collision]≈ exp{−m2/(2n)} ≈ 1−m2/(2n).
Hence,

Pr [no collision]≈ 1−10−3⇔m2/(2n)≈ 10−3

⇔ 2n ≈m2103⇔ 2b+1 ≈m2210

⇔ b + 1≈ 10 + 2 log2(m)≈ 10 + 2.9 ln(m).

Note: log2(x) = log2(e) ln(x)≈ 1.44 ln(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Pr [miss one specific item]≈ e−
m
n

(b) Pr [miss any one of the items]≤ ne−
m
n .
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Coupon Collector Problem: Analysis.

Event Am = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1− 1
n )

Fail the second time: (1− 1
n )

And so on ... for m times. Hence,

Pr [Am] = (1− 1
n

)×·· ·× (1− 1
n

)

= (1− 1
n

)m

ln(Pr [Am]) = m ln(1− 1
n

)≈m× (−1
n

)

Pr [Am] ≈ exp{−m
n
}.

For pm = 1
2 , we need around n ln2≈ 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1∪E2 · · ·∪En]

How does one estimate p? Union Bound:

p = Pr [E1∪E2 · · ·∪En]≤ Pr [E1] + Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−
m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−

m
n .
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Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−
m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p

).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−
m
n ≤ ne−ln(n/p) ≤ n(p

n )≤ p.)

E.g., n = 102⇒m = 530;n = 103⇒m = 7600.
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Quick Review.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

I Bayes’ Rule: Pr [Am|B] = pmqm/(p1q1 + · · ·+ pMqM).

I Product Rule:
Pr [A1∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1∩·· ·∩An−1].

I Balls in bins: m balls into n > m bins.

Pr [no collisions]≈ exp{−m2

2n
}

I Coupon Collection: n items. Buy m cereal boxes.

Pr [miss one specific item]≈e−
m
n ; Pr [miss any one of the items]≤ne−

m
n .

Key Mathematical Fact: ln(1− ε)≈−ε.
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Questions about outcomes ...

Experiment: roll two dice.

Sample Space: {(1,1),(1,2), . . . ,(6,6)}= {1, . . . ,6}2
How many pips?

Experiment: flip 100 coins.
Sample Space: {HHH · · ·H,THH · · ·H, . . . ,TTT · · ·T}
How many heads in 100 coin tosses?

Experiment: choose a random student in cs70.
Sample Space: {Adam,Jin,Bing, . . . ,Angeline}
What midterm score?

Experiment: hand back assignments to 3 students at random.
Sample Space: {123,132,213,231,312,321}
How many students get back their own assignment?

In each scenario, each outcome gives a number.

The number is a (known) function of the outcome.
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Random Variables.
A random variable, X , for an experiment with sample space Ω
is a function X : Ω→ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

The function X (·) is defined on the outcomes Ω.

The function X (·) is not random, not a variable!

What varies at random (from experiment to experiment)? The
outcome!
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Example 1 of Random Variable

Experiment: roll two dice.

Sample Space: {(1,1),(1,2), . . . ,(6,6)}= {1, . . . ,6}2
Random Variable X : number of pips.
X (1,1) = 2
X (1,2) = 3,
...
X (6,6) = 12,
X (a,b) = a + b,(a,b) ∈ Ω.
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Example 2 of Random Variable

Experiment: flip three coins

Sample Space: {HHH,THH,HTH,TTH,HHT ,THT ,HTT ,TTT}
Winnings: if win 1 on heads, lose 1 on tails: X
X (HHH) = 3 X (THH) = 1 X (HTH) = 1 X (TTH) =−1
X (HHT ) = 1 X (THT ) =−1 X (HTT ) =−1 X (TTT ) =−3
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Number of pips in two dice.

“What is the likelihood of getting n pips?”

Pr [X = 10] = 3/36 = Pr [X−1(10)];Pr [X = 8] = 5/36 = Pr [X−1(8)].
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Distribution

The probability of X taking on a value a.

Definition: The distribution of a random variable X , is
{(a,Pr [X = a]) : a ∈A }, where A is the range of X .

Pr [X = a] := Pr [X−1(a)] where X−1(a) := {ω | X (ω) = a}.
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Handing back assignments

Experiment: hand back assignments to 3 students at random.
Sample Space: Ω = {123,132,213,231,312,321}
How many students get back their own assignment?
Random Variable: values of X (ω) : {3,1,1,0,0,1}
Distribution:

X =


0, w.p. 1/3
1, w.p. 1/2
3, w.p. 1/6
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Flip three coins

Experiment: flip three coins

Sample Space: {HHH,THH,HTH,TTH,HHT ,THT ,HTT ,TTT}
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Expectation - Definition
Definition: The expected value of a random variable X is

E [X ] = ∑
a

a×Pr [X = a].

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an
experiment a large number N of times and if X1, . . . ,XN are the
successive values of the random variable, then

X1 + · · ·+ XN

N
≈ E [X ].

That is indeed the case, in the same way that the fraction of
times that X = x approaches Pr [X = x ].

This (nontrivial) result is called the Law of Large Numbers.

The subjectivist(bayesian) interpretation of E [X ] is less obvious.
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Expectation: A Useful Fact

Theorem:

E [X ] = ∑
ω

X (ω)×Pr [ω].

Proof:
E [X ] = ∑

a
a×Pr [X = a]

= ∑
a

a× ∑
ω:X(ω)=a

Pr [ω]

= ∑
a

∑
ω:X(ω)=a

X (ω)Pr [ω]

= ∑
ω

X (ω)Pr [ω]

Distributive property of multiplication over addition.
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An Example

Flip a fair coin three times.

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}.
X = number of H ’s: {3,2,2,2,1,1,1,0}.
Thus,

∑
ω

X (ω)Pr [ω] = {3 + 2 + 2 + 2 + 1 + 1 + 1 + 0}× 1
8
.

Also,

∑
a

a×Pr [X = a] = 3× 1
8

+ 2× 3
8

+ 1× 3
8

+ 0× 1
8
.

What’s the answer? Uh.... 3
2
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Expectation and Average.

There are n students in the class;

X (m) = score of student m, for m = 1,2, . . . ,n.

“Average score” of the n students: add scores and divide by n:

Average =
X (1) + X (1) + · · ·+ X (n)

n
.

Experiment: choose a student uniformly at random.
Uniform sample space: Ω = {1,2, · · · ,n},Pr [ω] = 1/n, for all ω.
Random Variable: midterm score: X (ω).
Expectation:

E(X ) = ∑
ω

X (ω)Pr [ω] = ∑
ω

X (ω)
1
n
.

Hence,
Average = E(X ).

This holds for a uniform probability space.
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The binomial distribution.
Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr [X = i], for each i .

How many sample points in event “X = i”?
i heads out of n coin flips =⇒

(n
i

)
What is the probability of ω if ω has i heads?
Probability of heads in any position is p.
Probability of tails in any position is (1−p).

So, we get

Pr [ω] = pi(1−p)n−i .

Probability of “X = i” is sum of Pr [ω], ω ∈ “X = i”.

Pr [X = i] =

(
n
i

)
pi(1−p)n−i , i = 0,1, . . . ,n : B(n,p) distribution
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Error channel and...

A packet is corrupted with probability p.

Send n + 2k packets.

Probability of at most k corruptions.

∑
i≤k

(
n + 2k

i

)
pi(1−p)n+2k−i .

Also distribution in polling, experiments, etc.
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Expectation of Binomial Distibution

Parameter p and n. What is expectation?

Pr [X = i] =

(
n
i

)
pi(1−p)n−i , i = 0,1, . . . ,n : B(n,p) distribution

E [X ] = ∑
i

i×Pr [X = i].

Uh oh? Well... It is pn.

Proof? After linearity of expectation this is easy.

Waiting is good.
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Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2, . . . ,6}. We say that X is uniformly distributed in
{1,2, . . . ,6}.
More generally, we say that X is uniformly distributed in
{1,2, . . . ,n} if Pr [X = m] = 1/n for m = 1,2, . . . ,n.
In that case,

E [X ] =
n

∑
m=1

mPr [X = m] =
n

∑
m=1

m× 1
n

=
1
n

n(n + 1)

2
=

n + 1
2

.
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Geometric Distribution

Let’s flip a coin with Pr [H] = p until we get H.

For instance:

ω1 = H, or
ω2 = T H, or
ω3 = T T H, or
ωn = T T T T · · · T H.

Note that Ω = {ωn,n = 1,2, . . .}.
Let X be the number of flips until the first H. Then, X (ωn) = n.

Also,
Pr [X = n] = (1−p)n−1p, n ≥ 1.
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We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!

(
λ

n

)m(
1− λ

n
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=
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nm
λ m
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≈(1) λ m

m!
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≈(2) λ m

m!

(
1− λ
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≈ λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)n ≈ e−a.
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Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ

λ

∞

∑
m=0

λ m

m!

= e−λ
λeλ = λ .
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Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.
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Summary
Random Variables

I A random variable X is a function X : Ω→ℜ.
I Pr [X = a] := Pr [X−1(a)] = Pr [{ω | X (ω) = a}].
I Pr [X ∈ A] := Pr [X−1(A)].
I The distribution of X is the list of possible values and their

probability: {(a,Pr [X = a]),a ∈A }.
I E [X ] := ∑a aPr [X = a].
I Expectation is Linear.
I B(n,p),U[1 : n],G(p),P(λ ).
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