We have a lot of slides for your use.

But will only cover some in this lecture.

For probability, from Professor Ramchandran. Will only review distributions since that was quick.

A bit more review of discrete math.

Probability Space.

- 1. A "random experiment":
 - (a) Flip a biased coin;
 - (b) Flip two fair coins;
 - (c) Deal a poker hand.
- 2. A set of possible outcomes: Ω .

3. Assign a probability to each outcome: $Pr: \Omega \rightarrow [0, 1]$.

(a)
$$Pr[H] = p, Pr[T] = 1 - p$$
 for some $p \in [0, 1]$
(b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
(c) $Pr[\underline{A \triangleq A \diamondsuit A \clubsuit A \heartsuit K \triangleq}] = \cdots = 1/\binom{52}{5}$

4. Assign a probability to each outcome: $Pr: \Omega \rightarrow [0, 1]$.

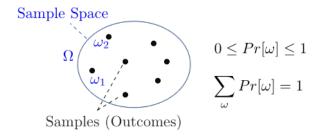
(a)
$$Pr[H] = p, Pr[T] = 1 - p$$
 for some $p \in [0, 1]$
(b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
(c) $Pr[\underline{A \triangleq A \diamondsuit A \clubsuit A \heartsuit K \triangleq}] = \cdots = 1/\binom{52}{5}$

Probability Space: formalism.

 Ω is the sample space.

 $ω \in Ω$ is a **sample point**. (Also called an **outcom e**.) Sample point ω has a probability Pr[ω] where

- $0 \leq Pr[\omega] \leq 1;$
- $\blacktriangleright \sum_{\omega \in \Omega} \Pr[\omega] = 1.$



An important remark

- The random experiment selects one and only one outcome in Ω.
- ► For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, its wrong to think that Ω = {H, T} and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- ► For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets *HH* or *TT* with probability 50% each. This is not captured by 'picking two outcomes.'

Probability Basics Review

Setup:

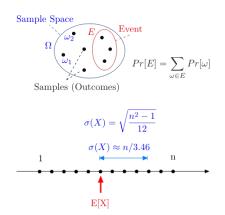
- Random Experiment.
 Flip a fair coin twice.
- Probability Space.
 - Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!)
 - ▶ **Probability:** $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$
 - 1. $0 \le Pr[\omega] \le 1$. 2. $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

Probability of exactly one 'heads' in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': *HT*, *TH*.

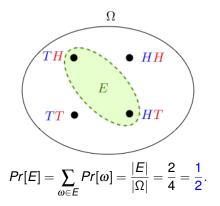
This leads to a definition! **Definition**:

- An event, *E*, is a subset of outcomes: $E \subset \Omega$.
- The **probability of** *E* is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$.



Probability of exactly one heads in two coin flips?

Sample Space, $\Omega = \{HH, HT, TH, TT\}$. Uniform probability space: $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$. Event, *E*, "exactly one heads": $\{TH, HT\}$.



Consequences of Additivity

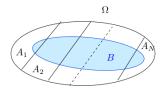
Theorem

(a) $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$ (inclusion-exclusion property) (b) $Pr[A_1 \cup \dots \cup A_n] \leq Pr[A_1] + \dots + Pr[A_n];$ (union bound) (c) If $A_1, \dots A_N$ are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then $Pr[B] = Pr[B \cap A_1] + \dots + Pr[B \cap A_N].$

(law of total probability)

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



Then,

$$Pr[B] = Pr[A_1 \cap B] + \cdots + Pr[A_N \cap B].$$

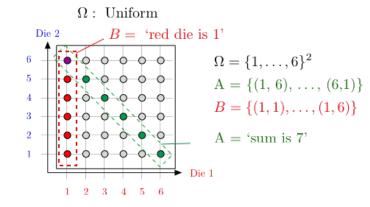
Indeed, *B* is the union of the disjoint sets $A_n \cap B$ for n = 1, ..., N. In "math": $\omega \in B$ is in exactly one of $A_i \cap B$. Adding up probability of them, get $Pr[\omega]$ in sum.

Conditional Probability.

$$Pr[B|A] = \frac{Pr[A \cap B]}{Pr[A]}$$

Yet more fun with conditional probability.

Toss a red and a blue die, sum is 7, what is probability that red is 1?



 $Pr[B|A] = \frac{|B \cap A|}{|A|} = \frac{1}{6}$; versus $Pr[B] = \frac{1}{6}$.

Observing A does not change your mind about the likelihood of B.

Product Rule

Recall the definition:

$$Pr[B|A] = rac{Pr[A \cap B]}{Pr[A]}.$$

Hence,

$$Pr[A \cap B] = Pr[A]Pr[B|A].$$

Consequently,

$$Pr[A \cap B \cap C] = Pr[(A \cap B) \cap C]$$

= $Pr[A \cap B]Pr[C|A \cap B]$
= $Pr[A]Pr[B|A]Pr[C|A \cap B].$

Product Rule

Theorem Product Rule Let $A_1, A_2, ..., A_n$ be events. Then

 $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$

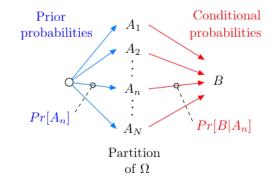
Proof: By induction. Assume the result is true for *n*. (It holds for n = 2.) Then,

$$\begin{aligned} ⪻[A_1 \cap \dots \cap A_n \cap A_{n+1}] \\ &= Pr[A_1 \cap \dots \cap A_n]Pr[A_{n+1}|A_1 \cap \dots \cap A_n] \\ &= Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \dots \cap A_{n-1}]Pr[A_{n+1}|A_1 \cap \dots \cap A_n], \end{aligned}$$

so that the result holds for n+1.

Total probability

Assume that Ω is the union of the disjoint sets A_1, \ldots, A_N .



 $Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_N]Pr[B|A_N].$

Is your coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B].

We know P[B|A] = 1/2, $P[B|\overline{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\overline{A}]$ Now,

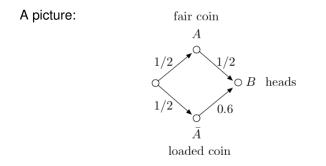
$$Pr[B] = Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}]$$

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

$$Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$$

Is your coin loaded?



Independence

Definition: Two events A and B are independent if

 $Pr[A \cap B] = Pr[A]Pr[B].$

Examples:

- ▶ When rolling two dice, A = sum is 7 and B = red die is 1 are independent;
- When rolling two dice, A = sum is 3 and B = red die is 1 are not independent;
- When flipping coins, A = coin 1 yields heads and B = coin 2 yields tails are independent;
- When throwing 3 balls into 3 bins, A = bin 1 is empty and B = bin 2 is empty are not independent;

Independence and conditional probability

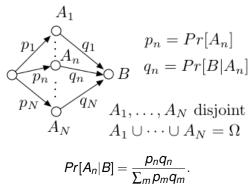
Fact: Two events A and B are independent if and only if

$$Pr[A|B] = Pr[A].$$

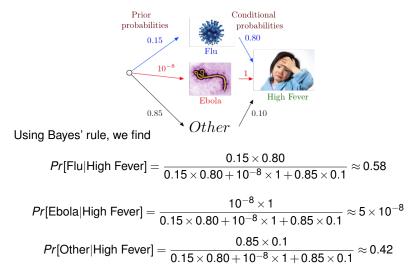
Indeed: $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$, so that $Pr[A|B] = Pr[A] \Leftrightarrow \frac{Pr[A \cap B]}{Pr[B]} = Pr[A] \Leftrightarrow Pr[A \cap B] = Pr[A]Pr[B].$

Bayes Rule

Another picture: We imagine that there are *N* possible causes A_1, \ldots, A_N .



Why do you have a fever?



These are the posterior probabilities. One says that 'Flu' is the Most Likely a Posteriori (MAP) cause of the high fever.

Summary

Events, Conditional Probability, Independence, Bayes' Rule

Key Ideas:

Conditional Probability:

$$Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$$

• Independence: $Pr[A \cap B] = Pr[A]Pr[B]$.

Bayes' Rule:

$$Pr[A_n|B] = \frac{Pr[A_n]Pr[B|A_n]}{\sum_m Pr[A_m]Pr[B|A_m]}.$$

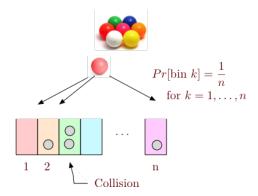
 $Pr[A_n|B] = posterior probability; Pr[A_n] = prior probability .$

All these are possible:

Pr[A|B] < Pr[A]; Pr[A|B] > Pr[A]; Pr[A|B] = Pr[A].

Balls in bins

One throws *m* balls into n > m bins.



Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

Balls in bins

Theorem: $Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\}, \text{ for large enough } n.$

In particular, $Pr[no \text{ collision}] \approx 1/2$ for $m^2/(2n) \approx ln(2)$, i.e.,

$$m \approx \sqrt{2\ln(2)n} \approx 1.2\sqrt{n}.$$

E.g., $1.2\sqrt{20} \approx 5.4$.

Roughly, $Pr[\text{collision}] \approx 1/2$ for $m = \sqrt{n}$. $(e^{-0.5} \approx 0.6.)$

The Calculation.

 A_i = no collision when *i*th ball is placed in a bin.

 $Pr[A_i|A_{i-1}\cap\cdots\cap A_1] = (1 - \frac{i-1}{n}).$ no collision = $A_1 \cap \cdots \cap A_m$.

Product rule:

$$Pr[A_1 \cap \dots \cap A_m] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_m|A_1 \cap \dots \cap A_{m-1}]$$

$$\Rightarrow Pr[\text{no collision}] = \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{m-1}{n}\right).$$

Hence,

$$\ln(\Pr[\text{no collision}]) = \sum_{k=1}^{m-1} \ln(1 - \frac{k}{n}) \approx \sum_{k=1}^{m-1} (-\frac{k}{n})^{(*)}$$
$$= -\frac{1}{n} \frac{m(m-1)}{2}^{(\dagger)} \approx -\frac{m^2}{2n}$$

(*) We used $\ln(1-\varepsilon) \approx -\varepsilon$ for $|\varepsilon| \ll 1$. (†) $1+2+\cdots+m-1 = (m-1)m/2$.

Today's your birthday, it's my birthday too..

Probability that *m* people all have different birthdays? With n = 365, one finds

 $Pr[collision] \approx 1/2$ if $m \approx 1.2\sqrt{365} \approx 23$. skippause If m = 60, we find that

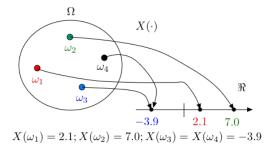
$$Pr[\text{no collision}] \approx \exp\{-\frac{m^2}{2n}\} = \exp\{-\frac{60^2}{2 \times 365}\} \approx 0.007.$$

If m = 366, then Pr[no collision] = 0. (No approximation here!)

Random Variables.

A **random variable**, *X*, for an experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.



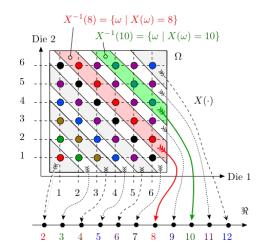
The function $X(\cdot)$ is defined on the outcomes Ω .

The function $X(\cdot)$ is not random, not a variable!

What varies at random (from experiment to experiment)? The outcome!

Number of pips in two dice.

"What is the likelihood of getting n pips?"

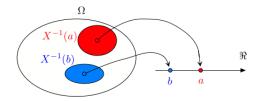


 $Pr[X = 10] = 3/36 = Pr[X^{-1}(10)]; Pr[X = 8] = 5/36 = Pr[X^{-1}(8)].$

Distribution

The probability of *X* taking on a value *a*.

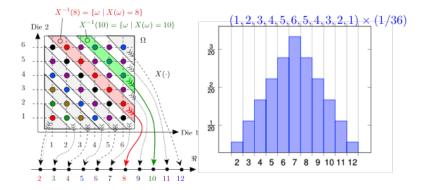
Definition: The **distribution** of a random variable *X*, is $\{(a, Pr[X = a]) : a \in \mathcal{A}\}$, where \mathcal{A} is the range of *X*.



 $Pr[X = a] := Pr[X^{-1}(a)]$ where $X^{-1}(a) := \{\omega \mid X(\omega) = a\}.$

Number of pips.

Experiment: roll two dice.



Named Distributions.

Some distributions come up over and over again.

...like "choose" or "stars and bars"

Let's cover one for this review.

The binomial distribution.

Flip *n* coins with heads probability *p*.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each *i*.

How many sample points in event "X = i"? *i* heads out of *n* coin flips $\implies \binom{n}{i}$

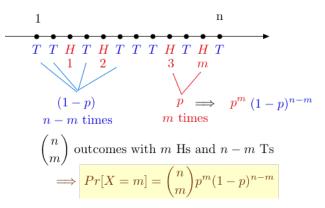
What is the probability of ω if ω has *i* heads? Probability of heads in any position is *p*. Probability of tails in any position is (1 - p). So, we get

$$Pr[\omega] = p^i (1-p)^{n-i}.$$

Probability of "X = i" is sum of $Pr[\omega]$, $\omega \in "X = i$ ".

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}, i = 0, 1, \dots, n: B(n,p) \text{ distribution}$$

The binomial distribution.



Summary

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

•
$$Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$$

•
$$Pr[X \in A] := Pr[X^{-1}(A)].$$

The distribution of X is the list of possible values and their probability: {(a, Pr[X = a]), a ∈ 𝒴}.

Discrete Math:Review

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if gcd(x,m) = 1.

Group structures more generally.

```
Extended-gcd(x, y) returns (d, a, b)
d = gcd(x, y) and d = ax + by
```

```
Multiplicative inverse of (x, m).
egcd(x, m) = (1, a, b)
a is inverse! 1 = ax + bm = ax \pmod{m}.
```

Idea: egcd.

gcd produces 1

by adding and subtracting multiples of x and y

Non-recursive extended gcd.

```
Example: p = 7, q = 11.

N = 77.

(p-1)(q-1) = 60

Choose e = 7, since gcd(7,60) = 1.

gcd(7,60).
```

$$7(0)+60(1) = 60$$

$$7(1)+60(0) = 7$$

$$7(-8)+60(1) = 4$$

$$7(9)+60(-1) = 3$$

$$7(-17)+60(2) = 1$$

Confirm: -119 + 120 = 1 $d = e^{-1} = -17 = 43 = \pmod{60}$

Fermat from Bijection.

Fermat's Little Theorem: For prime *p*, and $a \neq 0 \pmod{p}$,

 $a^{p-1} \equiv 1 \pmod{p}$.

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \dots, a \cdot (p-1) \pmod{p}\}.$

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, ..., p-1\}$. Invertible function: one-to-one.

 $T \subseteq S$ since $0 \notin T$.

p is prime.

$$\implies$$
 $T = S$.

Product of elts of T = Product of elts of S.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$$
,

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1)) \equiv (1\cdots(p-1)) \mod p.$$

Each of $2, \dots (p-1)$ has an inverse modulo p, mulitply by inverses to get...

 $a^{(p-1)} \equiv 1 \mod p$.

RSA

RSA: N = p, q e with gcd(e, (p-1)(q-1)) = 1. $d = e^{-1} \pmod{(p-1)(q-1)}$.

Theorem: $x^{ed} = x \pmod{N}$

Proof: $x^{ed} - x$ is divisible by p and $q \implies$ theorem! $x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1)$

If x is divisible by p, the product is. Otherwise $(x^{k(q-1)})^{p-1} = 1 \pmod{p}$ by Fermat. $\implies (x^{k(q-1)})^{p-1} - 1$ divisible by p.

Similarly for q.

RSA, Public Key, and Signatures.

RSA:

$$N = p, q$$

 e with gcd $(e, (p-1)(q-1))$.
 $d = e^{-1} \pmod{(p-1)(q-1)}$.

Public Key Cryptography:

 $D(E(m,K),k) = (m^e)^d \mod N = m.$

Signature scheme:

S(C) = D(C).Announce (C, S(C))Verify: Check C = E(C). $E(D(C, k), K) = (C^d)^e = C \pmod{N}$

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find $x = a \pmod{m}$ and $x = b \pmod{n}$ where gcd(m, n)=1.

CRT Thm: Unique solution (mod *mn*). **Proof:** Consider $u = n(n^{-1} \pmod{m})$. $u = 0 \pmod{n}$ $u = 1 \pmod{m}$ Consider $v = m(m^{-1} \pmod{n})$. $v = 1 \pmod{n}$ $v = 0 \pmod{m}$ Let x = au + bv. $x = a \pmod{m}$ since $bv = 0 \pmod{m}$ and $au = a \pmod{m}$ $x = b \pmod{n}$ since $au = 0 \pmod{n}$ and $bv = b \pmod{n}$

Only solution? If not, two solutions, *x* and *y*. $(x - y) \equiv 0 \pmod{m}$ and $(x - y) \equiv 0 \pmod{n}$. $\implies (x - y)$ is multiple of *m* and *n* since gcd(m, n)=1. $\implies x - y \ge mn \implies x, y \notin \{0, \dots, mn-1\}$. Thus, only one solution modulo *mn*.

Chinese Remainder Theorem.

Theorem: There is a unique solution modulo $\Pi_i n_i$, to the system $x = a_i \pmod{n_i}$ and $gcd(n_i, n_j) = 1$. For $x = 5 \pmod{7}$, $x = 2 \pmod{11}$, $x = 1 \pmod{3}$. $x = 5 \times ((11)((11)^{-1} \pmod{7})) \times (3)(3^{-1} \pmod{7})) + 2(7)(7^{-1} \pmod{11})(3)(3^{-1} \pmod{11})) + 1(7 \times 7^{-1} \pmod{3})(11 \times (11^{-1} \pmod{3}))$

This is all modulo $11 \times 7 \times 3 = 231$.

For each modulus n_i ,

multiply all other modulii by the inverses $(\mod n_i)$ and scale by a_i .

Polynomials

Property 1: Any degree *d* polynomial over a field has at most *d* roots.

Proof Idea:

Any polynomial with roots r_1, \ldots, r_k . written as $(x - r_1) \cdots (x - r_k)Q(x)$. using polynomial division. Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime *p* that contains any d+1: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Proof Ideas:

Lagrange Interpolation gives existence.

Property 1 gives uniqueness.

Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime *p* that contains any d+1 points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: *k* out of *n* people know secret. Scheme: degree n - 1 polynomial, P(x). Secret: P(0) Shares: $(1, P(1)), \dots (n, P(n))$. Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: *n* packets, *k* losses. Scheme: degree n-1 polynomial, P(x). Reed-Solomon. Message: $P(0) = m_0, P(1) = m_1, \dots P(n-1) = m_{n-1}$ Send: $(0, P(0)), \dots (n+k-1, P(n+k-1))$. Recover Message: Any *n* packets are cool by property 2.

Corruptions Coding: *n* packets, *k* corruptions. Scheme: degree n-1 polynomial, P(x). Reed-Solomon. Message: $P(0) = m_0, P(1) = m_1, \dots P(n-1) = m_{n-1}$ Send: $(0, P(0)), \dots (n+2k-1, P(n+2k-1))$. Recovery: P(x) is only consistent polynomial with n+k points. Property 2 and pigeonhole principle.

Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points i = 1, ..., i, n+2k, $P(i)E(i) = R(i)E(i) \pmod{p}$ since E(i) = 0 at points where there are errors. Let Q(x) = P(x)E(x).

$$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$$

$$E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.$$

Gives system of n + 2k linear equations.

$$a_{n+k-1} + \dots a_0 \equiv R(1)(1 + b_{k-1} \dots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \dots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \dots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \dots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \dots b_0) \pmod{p}$$

..and n+2k unknown coefficients of Q(x) and E(x)! Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).

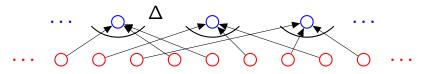
Counting

First Rule Second Rule Stars/Bars Common Scenarios: Sampling, Balls in Bins. Sum Rule. Inclusion/Exclusion. Combinatorial Proofs.

Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.

Second rule: when order doesn't matter divide..when possible.



3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$. First rule. Poker hands: Δ ?

Hand: *Q*,*K*,*A*.

Deals: *Q*,*K*,*A*, *Q*,*A*,*K*, *K*,*A*,*Q*,*K*,*A*,*Q*, *A*,*K*,*Q*, *A*,*Q*,*K*.

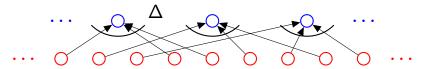
 $\Delta = 3 \times 2 \times 1$ First rule again.

Total: $\frac{52!}{49!3!}$ Second Rule!

Choose *k* out of *n*. Ordered set: $\frac{n!}{(n-k)!}$ What is Δ ? *k*! First rule again. \implies Total: $\frac{n!}{(n-k)!k!}$ Second rule.

Example: visualize

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule. Second rule: when order doesn't matter divide..when possible.



Orderings of ANAGRAM? Ordered Set: 7! First rule. A's are the same! What is Δ ? ANAGRAM A₁NA₂GRA₃M, A₂NA₁GRA₃M, ... $\Delta = 3 \times 2 \times 1 = 3!$ First rule! $\implies \frac{7!}{3!}$ Second rule!

Summary.

k Samples with replacement from *n* items: n^k . Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn't matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$. "*n* choose *k*" (Count using first rule and second rule.)

Sample with replacement and order doesn't matter: $\binom{k+n-1}{n-1}$.

Count with stars and bars:

how many ways to add up *n* numbers to get *k*.

Each number is number of samples of type *i* which adds to total, *k*.

Simple Inclusion/Exclusion

Sum Rule: For disjoint sets *S* and *T*, $|S \cup T| = |S| + |T|$

Example: How many permutations of *n* items start with 1 or 2? $1 \times (n-1)! + 1 \times (n-1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

S = phone numbers with 7 as first digit. $|S| = 10^9$

T = phone numbers with 7 as second digit. $|T| = 10^9$.

 $S \cap T$ = phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.

Answer: $|S| + |T| - |S \cap T| = 10^9 + 10^9 - 10^8$.

Combinatorial Proofs.

Theorem: $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.

Proof: How many size k subsets of $n+1? \binom{n+1}{k}$.

How many size k subsets of n+1? How many contain the first element? Chose first element, need to choose k-1 more from remaining n elements.

$$\implies \binom{n}{k-1}$$

How many don't contain the first element ?

Need to choose *k* elements from remaining *n* elts.

$$\implies \binom{n}{k}$$

So, $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$.

Countability

Isomporphism principle. Example. Countability. Diagonalization.

Isomorphism principle.

Given a function, $f : D \rightarrow R$. **One to One:** For all $\forall x, y \in D, x \neq y \implies f(x) \neq f(y)$. or $\forall x, y \in D, f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D$, y = f(x).

 $f(\cdot)$ is a **bijection** if it is one to one and onto.

Isomorphism principle:

If there is a bijection $f: D \rightarrow R$ then |D| = |R|.

Cardinalities of uncountable sets?

Cardinality of [0,1] smaller than all the reals?

 $f: \mathbf{R}^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \le x \le 1/2\\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$ If both in [0, 1/2], a shift $\implies f(x) \neq f(y)$. If neither in [0, 1/2] different mult inverses $\implies f(x) \neq f(y)$. If one is in [0, 1/2] and one isn't, different ranges $\implies f(x) \neq f(y)$. Bijection!

[0,1] is same cardinality as nonnegative reals!

Countable.

Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.

If the subset of *N* is infinite, *S* is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Subset of countable set is countable.

All countably infinite sets are the same cardinality as each other.

Examples: Countable by enumeration

- ▶ $N \times N$ Pairs of integers. Square of countably infinite? Enumerate: (0,0),(0,1),(0,2),...??? Never get to (1,1)! Enumerate: (0,0),(1,0),(0,1),(2,0),(1,1),(0,2)... (*a*,*b*) at position (*a*+*b*-1)(*a*+*b*)/2+*b* in this order.
- Positive Rational numbers. Infinite Subset of pairs of natural numbers. Countably infinite.
- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative, second positive..
 Will eventually get to any rational.

Diagonalization: power set of Integers.

The set of all subsets of N.

Assume is countable.

There is a listing, *L*, that contains all subsets of *N*.

Define a diagonal set, *D*: If *i*th set in *L* does not contain *i*, $i \in D$. otherwise $i \notin D$.

D is different from *i*th set in *L* for every *i*.

 \implies *D* is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the **powerset** of N.)

Uncomputability.

Halting problem is undecibable. Diagonalization.

Halt does not exist.

HALT(P, I) P - program I - input.

Determines if P(I) (*P* run on *I*) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ...

Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)

- 1. If HALT(P,P) = "halts", then go into an infinite loop.
- 2. Otherwise, halt immediately.

Assumption: there is a program HALT. There is text that "is" the program HALT. There is text that is the program Turing. Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

- \implies then HALTS(Turing, Turing) = halts
- \implies Turing(Turing) loops forever.

Turing(Turing) loops forever.

- \implies then HALTS(Turing, Turing) \neq halts
- \implies Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!

Undecidable problems.

Does a program print "Hello World"? Find exit points and add statement: **Print** "Hello World."

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?

Example: Ask program if " $x^n + y^n = 1$?" has integer solutions. Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This "problem" is not undecidable.

 $\begin{array}{l} \text{Undecidability for Diophantine set of equations} \\ \implies \text{ no program can take any set of integer equations} \\ & \text{and always output correct answer.} \end{array}$

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions... but don't overdo this as test strategy!!!

Ideas, conceptual, more calculation.

Wrapup.

Watch Piazza for Logistics!

Other issues.... fa17@eecs70.org Private message on piazza.