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Probability Space.
1. A “random experiment”:

(a) Flip a biased coin;
(b) Flip two fair coins;
(c) Deal a poker hand.

2. A set of possible outcomes: Ω.
(a) Ω = {H,T};
(b) Ω = {HH,HT ,TH,TT}; |Ω|= 4;
(c) Ω = { A♠ A♦ A♣ A♥ K♠ , A♠ A♦ A♣ A♥ Q♠, . . .}
|Ω|=

(52
5

)
.

3. Assign a probability to each outcome: Pr : Ω→ [0,1].
(a) Pr [H] = p,Pr [T ] = 1−p for some p ∈ [0,1]
(b) Pr [HH] = Pr [HT ] = Pr [TH] = Pr [TT ] = 1

4
(c) Pr [ A♠ A♦ A♣ A♥ K♠ ] = · · ·= 1/

(52
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Probability Space: formalism.

Ω is the sample space.

ω ∈ Ω is a sample point. (Also called an outcom e.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point.

(Also called an outcom e.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point. (Also called an outcom e.)

Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point. (Also called an outcom e.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point. (Also called an outcom e.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point. (Also called an outcom e.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



Probability Space: formalism.

Ω is the sample space.
ω ∈ Ω is a sample point. (Also called an outcom e.)
Sample point ω has a probability Pr [ω] where

I 0≤ Pr [ω]≤ 1;

I ∑ω∈Ω Pr [ω] = 1.



An important remark

I The random experiment selects one and only one outcome in Ω.

I For instance, when we flip a fair coin twice

I Ω = {HH,TH,HT ,TT}
I The experiment selects one of the elements of Ω.

I In this case, its wrong to think that Ω = {H,T} and that the
experiment selects two outcomes.

I Why? Because this would not describe how the two coin flips
are related to each other.

I For instance, say we glue the coins side-by-side so that they
face up the same way. Then one gets HH or TT with probability
50% each. This is not captured by ‘picking two outcomes.’
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50% each. This is not captured by ‘picking two outcomes.’
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Probability Basics Review

Setup:

I Random Experiment.
Flip a fair coin twice.

I Probability Space.

I Sample Space: Set of outcomes, Ω.
Ω = {HH,HT ,TH,TT}
(Note: Not Ω = {H,T} with two picks!)

I Probability: Pr [ω] for all ω ∈ Ω.
Pr [HH] = · · ·= Pr [TT ] = 1/4

1. 0≤ Pr [ω]≤ 1.
2. ∑ω∈Ω Pr [ω] = 1.
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Probability of exactly one ‘heads’ in two coin flips?

Idea: Sum the probabilities of all the different outcomes that have
exactly one ‘heads’: HT ,TH.

This leads to a definition!
Definition:

I An event, E , is a subset of outcomes: E ⊂ Ω.
I The probability of E is defined as Pr [E ] = ∑ω∈E Pr [ω].
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Probability of exactly one heads in two coin flips?

Sample Space, Ω = {HH,HT ,TH,TT}.
Uniform probability space: Pr [HH] = Pr [HT ] = Pr [TH] = Pr [TT ] = 1

4 .

Event, E , “exactly one heads”: {TH,HT}.

Pr [E ] = ∑
ω∈E

Pr [ω] =
|E |
|Ω|

=
2
4

=
1
2
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Consequences of Additivity

Theorem

(a) Pr [A∪B] = Pr [A] + Pr [B]−Pr [A∩B];

(inclusion-exclusion property)

(b) Pr [A1∪·· ·∪An]≤ Pr [A1] + · · ·+ Pr [An];

(union bound)

(c) If A1, . . .AN are a partition of Ω, i.e.,

pairwise disjoint and ∪N
m=1Am = Ω, then

Pr [B] = Pr [B∩A1] + · · ·+ Pr [B∩AN ].

(law of total probability)
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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Then,
Pr [B] = Pr [A1∩B] + · · ·+ Pr [AN ∩B].

Indeed, B is the union of the disjoint sets An ∩B for n = 1, . . . ,N.

In “math”: ω ∈ B is in exactly one of Ai ∩B.

Adding up probability of them, get Pr [ω] in sum.
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Conditional Probability.

Pr [B|A] =
Pr [A∩B]

Pr [A]



Yet more fun with conditional probability.
Toss a red and a blue die, sum is 7,
what is probability that red is 1?

Pr [B|A] = |B∩A|
|A| = 1

6 ; versus Pr [B] = 1
6 .

Observing A does not change your mind about the likelihood of B.
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Product Rule

Recall the definition:

Pr [B|A] =
Pr [A∩B]

Pr [A]
.

Hence,
Pr [A∩B] = Pr [A]Pr [B|A].

Consequently,

Pr [A∩B∩C] = Pr [(A∩B)∩C]

= Pr [A∩B]Pr [C|A∩B]

= Pr [A]Pr [B|A]Pr [C|A∩B].
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Total probability

Assume that Ω is the union of the disjoint sets A1, . . . ,AN .

Pr [B] = Pr [A1]Pr [B|A1] + · · ·+ Pr [AN ]Pr [B|AN ].



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B] + Pr [Ā∩B] = Pr [A]Pr [B|A] + Pr [Ā]Pr [B|Ā]

= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.
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= (1/2)(1/2) + (1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)

(1/2)(1/2) + (1/2)0.6
≈ 0.45.



Is your coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].
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We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]
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Independence

Definition: Two events A and B are independent if

Pr [A∩B] = Pr [A]Pr [B].

Examples:

I When rolling two dice, A = sum is 7 and B = red die is 1 are
independent;

I When rolling two dice, A = sum is 3 and B = red die is 1 are not
independent;

I When flipping coins, A = coin 1 yields heads and B = coin 2
yields tails are independent;

I When throwing 3 balls into 3 bins, A = bin 1 is empty and B =
bin 2 is empty are not independent;
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Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8×1

0.15×0.80+10−8×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8×1+0.85×0.1
≈ 0.42

These are the posterior probabilities. One says that ‘Flu’ is the Most Likely a
Posteriori (MAP) cause of the high fever.
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Summary

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

I Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

I Independence: Pr [A∩B] = Pr [A]Pr [B].

I Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

I All these are possible:

Pr [A|B] < Pr [A];Pr [A|B] > Pr [A];Pr [A|B] = Pr [A].
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The Calculation.
Ai = no collision when i th ball is placed in a bin.

Pr [Ai |Ai−1∩·· ·∩A1] = (1− i−1
n ).

no collision = A1∩·· ·∩Am.

Product rule:
Pr [A1∩·· ·∩Am] = Pr [A1]Pr [A2|A1] · · ·Pr [Am|A1∩·· ·∩Am−1]

⇒ Pr [no collision] =

(
1− 1

n

)
· · ·
(

1−m−1
n

)
.

Hence,

ln(Pr [no collision]) =
m−1

∑
k=1

ln(1− k
n

)≈
m−1

∑
k=1

(−k
n

) (∗)

= −1
n

m(m−1)

2

(†)

≈−m2

2n

(∗) We used ln(1− ε)≈−ε for |ε| � 1.
(†) 1 + 2 + · · ·+ m−1 = (m−1)m/2.
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Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?

With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365≈ 23.
skippause
If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)
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Random Variables.
A random variable, X , for an experiment with sample space Ω is a
function X : Ω→ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

The function X (·) is defined on the outcomes Ω.

The function X (·) is not random, not a variable!

What varies at random (from experiment to experiment)? The
outcome!
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Pr [X = 10] = 3/36 = Pr [X−1(10)];Pr [X = 8] = 5/36 = Pr [X−1(8)].
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Distribution

The probability of X taking on a value a.

Definition: The distribution of a random variable X , is
{(a,Pr [X = a]) : a ∈A }, where A is the range of X .

Pr [X = a] := Pr [X−1(a)] where X−1(a) := {ω | X (ω) = a}.
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Some distributions come up over and over again.

...like “choose” or “stars and bars”....

Let’s cover one for this review.
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The binomial distribution.
Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr [X = i], for each i .

How many sample points in event “X = i”?
i heads out of n coin flips =⇒

(n
i

)
What is the probability of ω if ω has i heads?
Probability of heads in any position is p.
Probability of tails in any position is (1−p).

So, we get

Pr [ω] = pi (1−p)n−i .

Probability of “X = i” is sum of Pr [ω], ω ∈ “X = i”.

Pr [X = i] =

(
n
i

)
pi (1−p)n−i , i = 0,1, . . . ,n : B(n,p)distribution
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Summary

Random Variables

I A random variable X is a function X : Ω→ℜ.

I Pr [X = a] := Pr [X−1(a)] = Pr [{ω | X (ω) = a}].
I Pr [X ∈ A] := Pr [X−1(A)].

I The distribution of X is the list of possible values and their
probability: {(a,Pr [X = a]),a ∈A }.
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Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if gcd(x ,m) = 1.

Group structures more generally.

Extended-gcd(x ,y ) returns (d ,a,b)
d = gcd(x ,y) and d = ax + by

Multiplicative inverse of (x ,m).
egcd(x ,m) = (1,a,b)

a is inverse! 1 = ax + bm = ax (mod m).

Idea: egcd.
gcd produces 1
by adding and subtracting multiples of x and y
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Non-recursive extended gcd.
Example: p = 7, q = 11.

N = 77.
(p−1)(q−1) = 60
Choose e = 7, since gcd(7,60) = 1.

egcd(7,60).

7(0) + 60(1) = 60
7(1) + 60(0) = 7

7(−8) + 60(1) = 4
7(9) + 60(−1) = 3

7(−17) + 60(2) = 1

Confirm: −119 + 120 = 1

d = e−1 =−17 = 43 = (mod 60)
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Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and a 6≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider T = {a ·1 (mod p), . . . ,a · (p−1) (mod p)}.
T is range of function f (x) = ax mod (p) for set S = {1, . . . ,p−1}.

Invertible function: one-to-one.
T ⊆ S since 0 6∈ T .

p is prime.
=⇒ T = S.

Product of elts of T = Product of elts of S.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p,
mulitply by inverses to get...

a(p−1) ≡ 1 mod p.
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RSA

RSA:

N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q

e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.

d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:

xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x

= xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x

= x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.

Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.

=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)) = 1.
d = e−1 (mod (p−1)(q−1)).

Theorem: xed = x (mod N)

Proof:
xed −x is divisible by p and q =⇒ theorem!

xed −x = xk(p−1)(q−1)+1−x = x((xk(q−1))p−1−1)

If x is divisible by p, the product is.
Otherwise (xk(q−1))p−1 = 1 (mod p) by Fermat.
=⇒ (xk(q−1))p−1−1 divisible by p.

Similarly for q.



RSA, Public Key, and Signatures.

RSA:
N = p,q
e with gcd(e,(p−1)(q−1)).
d = e−1 (mod (p−1)(q−1)).

Public Key Cryptography:

D(E(m,K ),k) = (me)d mod N = m.

Signature scheme:

S(C) = D(C).
Announce (C,S(C))

Verify: Check C = E(C).

E(D(C,k),K ) = (Cd )e = C (mod N)
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Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: Unique solution (mod mn).
Proof:
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)

Consider v = m(m−1 (mod n)).
v = 1 (mod n) v = 0 (mod m)

Let x = au + bv .
x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

Only solution? If not, two solutions, x and y .
(x−y)≡ 0 (mod m) and (x−y)≡ 0 (mod n).

=⇒ (x−y) is multiple of m and n since gcd(m,n)=1.
=⇒ x−y ≥mn =⇒ x ,y 6∈ {0, . . . ,mn−1}.
Thus, only one solution modulo mn.
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Chinese Remainder Theorem.

Theorem: There is a unique solution modulo Πini , to the system
x = ai (mod ni ) and gcd(ni ,nj ) = 1.

For x = 5 (mod 7), x = 2 (mod 11), x = 1 (mod 3).

x = 5× ((11)((11)−1 (mod 7))× (3)(3−1 (mod 7))
+2(7)(7−1 (mod 11))(3)(3−1 (mod 11))

+1(7×7−1 (mod 3))(11× (11−1 (mod 3))

This is all modulo 11×7×3 = 231.

For each modulus ni ,
multiply all other modulii by the inverses (mod ni )
and scale by ai .
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Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots r1, . . . , rk .
written as (x− r1) · · ·(x− rk )Q(x).
using polynomial division.

Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree ≤ d with
arithmetic modulo prime p that contains any d + 1:
(x1,y1), . . . ,(xd+1,yd+1) with xi distinct.

Proof Ideas:
Lagrange Interpolation gives existence.
Property 1 gives uniqueness.
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Applications.
Property 2: There is exactly 1 polynomial of degree ≤ d with
arithmetic modulo prime p that contains any d + 1 points:
(x1,y1), . . . ,(xd+1,yd+1) with xi distinct.

Secret Sharing: k out of n people know secret.
Scheme: degree n−1 polynomial, P(x).
Secret: P(0) Shares: (1,P(1)), . . .(n,P(n)).
Recover Secret: Reconstruct P(x) with any k points.

Erasure Coding: n packets, k losses.
Scheme: degree n−1 polynomial, P(x). Reed-Solomon.
Message: P(0) = m0,P(1) = m1, . . .P(n−1) = mn−1
Send: (0,P(0)), . . .(n + k −1,P(n + k −1)).

Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Scheme: degree n−1 polynomial, P(x). Reed-Solomon.
Message: P(0) = m0,P(1) = m1, . . .P(n−1) = mn−1
Send: (0,P(0)), . . .(n + 2k −1,P(n + 2k −1)).

Recovery: P(x) is only consistent polynomial with n + k points.
Property 2 and pigeonhole principle.
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Welsh-Berlekamp
Idea: Error locator polynomial of degree k with zeros at errors.

For all points i = 1, . . . , i ,n + 2k , P(i)E(i) = R(i)E(i) (mod p)
since E(i) = 0 at points where there are errors.

Let Q(x) = P(x)E(x).

Q(x) = an+k−1xn+k−1 + · · ·a0.
E(x) = xk + bk−1xk−1 + · · ·b0.

Gives system of n + 2k linear equations.
an+k−1 + . . .a0 ≡ R(1)(1 + bk−1 · · ·b0) (mod p)

an+k−1(2)n+k−1 + . . .a0 ≡ R(2)((2)k + bk−1(2)k−1 · · ·b0) (mod p)

...
an+k−1(m)n+k−1 + . . .a0 ≡ R(m)((m)k + bk−1(m)k−1 · · ·b0) (mod p)

..and n + 2k unknown coefficients of Q(x) and E(x)!

Solve for coefficients of Q(x) and E(x).

Find P(x) = Q(x)/E(x).
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Example: visualize.
First rule: n1×n2 · · ·×n3. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

. . .. . .

. . .. . . ∆

3 card Poker deals: 52×51×50 = 52!
49! . First rule.

Poker hands: ∆?
Hand: Q,K ,A.
Deals: Q,K ,A, Q,A,K , K ,A,Q,K ,A,Q, A,K ,Q, A,Q,K .

∆ = 3×2×1 First rule again.
Total: 52!

49!3! Second Rule!

Choose k out of n.
Ordered set: n!

(n−k)!

What is ∆? k ! First rule again.
=⇒ Total: n!

(n−k)!k ! Second rule.
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Summary.

k Samples with replacement from n items: nk .

Sample without replacement: n!
(n−k)!

Sample without replacement and order doesn’t matter:
(n

k

)
= n!

(n−k)!k ! .
“n choose k ”
(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter:
(k+n−1

n−1

)
.

Count with stars and bars:
how many ways to add up n numbers to get k .

Each number is number of samples of type i which adds to total, k .
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Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T , |S∪T |= |S|+ |T |

Example: How many permutations of n items start with 1 or 2?
1× (n−1)! +1× (n−1)!

Inclusion/Exclusion Rule: For any S and T ,
|S∪T |= |S|+ |T |− |S∩T |.
Example: How many 10-digit phone numbers have 7 as their first or
second digit?

S = phone numbers with 7 as first digit.|S|= 109

T = phone numbers with 7 as second digit. |T |= 109.

S∩T = phone numbers with 7 as first and second digit. |S∩T |= 108.

Answer: |S|+ |T |− |S∩T |= 109 + 109−108.
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Isomorphism principle.

Given a function, f : D→ R.

One to One:
For all ∀x ,y ∈ D, x 6= y =⇒ f (x) 6= f (y).
or
∀x ,y ∈ D, f (x) = f (y) =⇒ x = y .

Onto: For all y ∈ R, ∃x ∈ D,y = f (x).

f (·) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection f : D→ R then |D|= |R|.
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Cardinalities of uncountable sets?

Cardinality of [0,1] smaller than all the reals?

f : R+→ [0,1].

f (x) =

{
x + 1

2 0≤ x ≤ 1/2
1

4x x > 1/2

One to one. x 6= y
If both in [0,1/2], a shift =⇒ f (x) 6= f (y).
If neither in [0,1/2] different mult inverses =⇒ f (x) 6= f (y).
If one is in [0,1/2] and one isn’t, different ranges =⇒ f (x) 6= f (y).
Bijection!

[0,1] is same cardinality as nonnegative reals!
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Countable.

Definition: S is countable if there is a bijection between S and some
subset of N.

If the subset of N is finite, S has finite cardinality.

If the subset of N is infinite, S is countably infinite.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Subset of countable set is countable.

All countably infinite sets are the same cardinality as each other.
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Examples: Countable by enumeration

I N×N - Pairs of integers.

Square of countably infinite?
Enumerate: (0,0),(0,1),(0,2), . . . ???
Never get to (1,1)!
Enumerate: (0,0),(1,0),(0,1),(2,0),(1,1),(0,2) . . .
(a,b) at position (a + b−1)(a + b)/2 + b in this order.

I Positive Rational numbers.
Infinite Subset of pairs of natural numbers.
Countably infinite.

I All rational numbers.
Enumerate: list 0, positive and negative. How?
Enumerate: 0, first positive, first negative, second positive..
Will eventually get to any rational.
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Diagonalization: power set of Integers.

The set of all subsets of N.

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If i th set in L does not contain i , i ∈ D.

otherwise i 6∈ D.

D is different from i th set in L for every i .
=⇒ D is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
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Halt and Turing.
Proof:

Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).

Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)

1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.

2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.

There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.

There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.

Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts

=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts

=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.

=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts

=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Halt and Turing.
Proof: Assume there is a program HALT (·, ·).
Turing(P)
1. If HALT(P,P) =”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
=⇒ then HALTS(Turing, Turing) = halts
=⇒ Turing(Turing) loops forever.

Turing(Turing) loops forever.
=⇒ then HALTS(Turing, Turing) 6= halts
=⇒ Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!



Undecidable problems.

Does a program print “Hello World”?

Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?

Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?

Example: Ask program if “ xn + yn = 1?” has integer solutions.
Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
=⇒ no program can take any set of integer equations

and always output correct answer.



Undecidable problems.

Does a program print “Hello World”?
Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
Example: Ask program if “ xn + yn = 1?” has integer solutions.

Problem is undecidable.

Be careful!

Is there a solution to xn + yn = 1?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.
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=⇒ no program can take any set of integer equations

and always output correct answer.
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Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...

but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas,

conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,

more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,

more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Midterm format

Time: approximately 120 minutes.

Some longer questions.

Priming: sequence of questions...
but don’t overdo this as test strategy!!!

Ideas, conceptual,
more calculation.



Wrapup.

Watch Piazza for Logistics!

Other issues....
fa17@eecs70.org
Private message on piazza.
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