
CS70: Random Variables (contd.)

Random Variables: Expectation

1. Random Variables: Brief Review
2. Expectation and properties
3. Important Distributions

Random Variables: Definitions
Definition
A random variable, X , for a random experiment with sample space Ω
is a function X : Ω→ℜ.

Thus, X (·) assigns a real number X (ω) to each ω ∈ Ω.

Definitions
(a) For a ∈ℜ, one defines

X−1(a) := {ω ∈ Ω | X (ω) = a}.
(b) For A⊂ℜ, one defines

X−1(A) := {ω ∈ Ω | X (ω) ∈ A}.
(c) The probability that X = a is defined as

Pr [X = a] = Pr [X−1(a)].

(d) The probability that X ∈ A is defined as

Pr [X ∈ A] = Pr [X−1(A)].

(e) The distribution of a random variable X , is

{(a,Pr [X = a]) : a ∈A },
where A is the range of X . That is, A = {X (ω),ω ∈ Ω}.

Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

E [X ] = ∑
a

a×Pr [X = a].

Theorem:

E [X ] = ∑
ω

X (ω)×Pr [ω].

An Example

Flip a fair coin three times.

Ω = {HHH,HHT ,HTH,THH,HTT ,THT ,TTH,TTT}.
X = number of H ’s: {3,2,2,2,1,1,1,0}.
Thus,

∑
ω

X (ω)Pr [ω] = {3 + 2 + 2 + 2 + 1 + 1 + 1 + 0}× 1
8
.

Also,

∑
a

a×Pr [X = a] = 3× 1
8

+ 2× 3
8

+ 1× 3
8

+ 0× 1
8
.

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?
Recall the definition of the random variable X :
{HHH,HHT ,HTH,HTT ,THH,THT ,TTH,TTT}→ {3,1,1,−1,1,−1,−1,−3}.

E [X ] = 3× 1
8

+ 1× 3
8
−1× 3

8
−3× 1

8
= 0.

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment
many times:

X1 + · · ·+ Xn

n
, when n� 1.

The fact that this average converges to E [X ] is a theorem:
the Law of Large Numbers. (See later.)

Law of Large Numbers
An Illustration: Rolling Dice



Indicators

Definition
Let A be an event. The random variable X defined by

X (ω) =

{
1, if ω ∈ A
0, if ω /∈ A

is called the indicator of the event A.

Note that Pr [X = 1] = Pr [A] and Pr [X = 0] = 1−Pr [A].

Hence,

E [X ] = 1×Pr [X = 1] + 0×Pr [X = 0] = Pr [A].

This random variable X (ω) is sometimes written as

1{ω ∈ A} or 1A(ω).

Thus, we will write X = 1A.

Linearity of Expectation

Theorem: Expectation is linear

E [a1X1 + · · ·+ anXn] = a1E [X1] + · · ·+ anE [Xn].

Proof:

E [a1X1 + · · ·+ anXn]

= ∑
ω

(a1X1 + · · ·+ anXn)(ω)Pr [ω]

= ∑
ω

(a1X1(ω) + · · ·+ anXn(ω))Pr [ω]

= a1 ∑
ω

X1(ω)Pr [ω] + · · ·+ an ∑
ω

Xn(ω)Pr [ω]

= a1E [X1] + · · ·+ anE [Xn].

Note: If we had defined Y = a1X1 + · · ·+ anXn has had tried to
compute E [Y ] = ∑y yPr [Y = y ], we would have been in trouble!

Using Linearity - 1: Pips (dots) on dice

Roll a die n times.

Xm = number of pips on roll m.

X = X1 + · · ·+ Xn = total number of pips in n rolls.

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because the Xm have the same distribution

Now,

E [X1] = 1× 1
6

+ · · ·+ 6× 1
6

=
6×7

2
× 1

6
=

7
2
.

Hence,

E [X ] =
7n
2
.

Note: Computing ∑x xPr [X = x ] directly is not easy!

Using Linearity - 2: Random assignments Example

Hand out assignments at random to n students.

X = number of students that get their own assignment back.

X = X1 + · · ·+ Xn where
Xm = 1{student m gets his/her own assignment back}.
One has

E [X ] = E [X1 + · · ·+ Xn]

= E [X1] + · · ·+ E [Xn], by linearity
= nE [X1], because all the Xm have the same distribution
= nPr [X1 = 1], because X1 is an indicator
= n(1/n), because student 1 is equally likely

to get any one of the n assignments
= 1.

Note that linearity holds even though the Xm are not independent.

Note: What is Pr [X = m]? Tricky ....

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr [X = i], for each i .

Pr [X = i] =

(
n
i

)
pi(1−p)n−i .

E [X ] = ∑
i

i×Pr [X = i] = ∑
i

i×
(

n
i

)
pi(1−p)n−i .

Uh oh. ... Or... a better approach: Let

Xi =

{
1 if i th flip is heads
0 otherwise

E [Xi ] = 1×Pr [“heads′′] + 0×Pr [“tails′′] = p.

Moreover X = X1 + · · ·Xn and

E [X ] = E [X1] + E [X2] + · · ·E [Xn] = n×E [Xi ]= np.

Calculating E [g(X )]
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ℜ : g(x) = y}.

This is typically rather tedious!

Method 2: We use the following result.

Theorem:
E [g(X )] = ∑

x
g(x)Pr [X = x ].

Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].



An Example
Let X be uniform in {−2,−1,0,1,2,3}.
Let also g(X ) = X 2. Then (method 2)

E [g(X )] =
3

∑
x=−2

x2 1
6

= {4 + 1 + 0 + 1 + 4 + 9}1
6

=
19
6
.

Method 1 - We find the distribution of Y = X 2:

Y =





4, w.p. 2
6

1, w.p. 2
6

0, w.p. 1
6

9, w.p. 1
6 .

Thus,

E [Y ] = 4
2
6

+ 1
2
6

+ 0
1
6

+ 9
1
6

=
19
6
.

Center of Mass

The expected value has a center of mass interpretation:
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Monotonicity
Definition
Let X ,Y be two random variables on Ω. We write X ≤ Y if
X (ω)≤ Y (ω) for all ω ∈ Ω, and similarly for X ≥ Y and X ≥ a
for some constant a.
Facts
(a) If X ≥ 0, then E [X ]≥ 0.
(b) If X ≤ Y , then E [X ]≤ E [Y ].
Proof
(a) If X ≥ 0, every value a of X is nonnegative. Hence,

E [X ] = ∑
a

aPr [X = a]≥ 0.

(b) X ≤ Y ⇒ Y −X ≥ 0⇒ E [Y ]−E [X ] = E [Y −X ]≥ 0.

Example:

B =∪mAm⇒ 1B(ω)≤∑m 1Am (ω)⇒Pr [∪mAm]≤∑m Pr [Am].

Summary
Random Variables

I A random variable X is a function X : Ω→ℜ.
I Pr [X = a] := Pr [X−1(a)] = Pr [{ω | X (ω) = a}].
I Pr [X ∈ A] := Pr [X−1(A)].
I The distribution of X is the list of possible values and their

probability: {(a,Pr [X = a]),a ∈A }.
I E [X ] := ∑a aPr [X = a].
I Expectation is Linear.


