CS70: Random Variables (contd.)

| Random Variables: Expectation |

1. Random Variables: Brief Review
2. Expectation and properties
3. Important Distributions



Random Variables: Definitions
Definition
A random variable, X, for a random experiment with sample space Q
is a function X : Q — R.

Thus, X(-) assigns a real number X(w) to each o € Q.

Definitions
(a) For a e R, one defines

X Na)={oecQ|X(w)=al
(b) For A C R, one defines
X YA ={weQ|X(o)eA}.
(¢) The probability that X = a is defined as
Pr[X = a] = Pr[X~(a)].
(d) The probability that X € A is defined as
Pr[X € Al = Pr[X~"(A)].
(e) The distribution of a random variable X, is
{(a,Pr[X=al):ac &},
where & is the range of X. Thatis, & = {X(w),® € Q}.



Expectation - Definition

Definition: The expected value (or mean, or expectation) of a
random variable X is

EX]=) axPriX=a].

Theorem:

ElX] =Y X(w) x Pr{o)].



An Example

Flip a fair coin three times.
Q= {HHH,HHT ,HTH, THH HTT, THT, TTH, TTT}.
X = number of H's: {3,2,2,2,1,1,1,0}.
Thus,
1
Y X(w)Prlo]={3+2+2+2+1+1+1+0} x 3

()

Also,

1 3 3 1
EaaxPr[X al 3><8—i—2><8+ ><8+0><8



Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable X:
{HHH,HHT ,HTH,HTT , THH, THT , TTH, TTT} — {3,1,1,-1,1,—1,—1,-3}.

1 3 3 1
E[X]—3x§+1x§—1x§—3x§_0.

Can you ever win 07

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!
It is the average value per experiment, if you perform the experiment

many times:
M when n> 1
n ’ '

The fact that this average converges to E[X] is a theorem:
the Law of Large Numbers. (See later.)



Law of Large Numbers
An lllustration: Rolling Dice

average dice walue against number of rolls
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Indicators

Definition
Let A be an event. The random variable X defined by

1, focA
X(“’)_{ 0, ifogA

is called the indicator of the event A.
Note that Pr[X = 1] = Pr[A] and Pr[X =0] =1— Pr[A].
Hence,

E[X]=1xPr[X=1]+0x Pr[X =0] = Pr[A].
This random variable X(®) is sometimes written as
1{w € A} or 14(w).

Thus, we will write X =14.



Linearity of Expectation
Theorem: Expectation is linear

Proof:

E[a1X1 +~~-+aan]

_Z (a1 X1(®)+---+anXn(w))Pr{o]
= a ZX1 )Pr[o]+ - +anZXn )Pr{w]
= a4 E[X1] + - +anE[Xn]~

Note: If we had defined Y = a; Xj +--- + an X, has had tried to
compute E[Y] =Y, yPr[Y = y], we would have been in trouble!



Using Linearity - 1: Pips (dots) on dice

Roll a die ntimes.
Xm = number of pips on roll m.
X = X1+ -+ Xp = total number of pips in n rolls.
E[X] = EXi+---+Xi]
= E[Xi]+---+ E[Xx4], by linearity
= nE[Xi], because the X, have the same distribution

mow 1 1 6x7 1 7
X
Eal=1x g+ +Bxg="gxg=35.
Hence, .
n
E[X]f?.

Note: Computing Y., xPr[X = x] directly is not easy!



Using Linearity - 2: Random assignments Example

Hand out assignments at random to n students.
X = number of students that get their own assignment back.

X =Xi+---+ X, where
Xm = 1{student m gets his/her own assignment back}.

One has

E[X] = E[Xi+---+Xn]
= E[Xq]+---+ E[Xn], by linearity
= nE[Xj], because all the X, have the same distribution
= nPr[X; = 1], because X; is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments
= 1.
Note that linearity holds even though the X;;; are not independent.
Note: What is Pr[X = m]? Tricky ....



Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads
Binomial Distibution: Pr[X = i], for each i.

prix=1=()plt1-p"

EX]=Yix PriX=1=Yix (’I’) pl(1—p).

Uh oh. ... Or... a better approach: Let
X = { 1 if ithflipis hegds

0 otherwise
E[Xj] =1 x Pr[“heads"] + 0 x Pr[“tails"] = p.
Moreover X = X +--- X, and
E[X] = E[X{]+ E[Xo] + - - E[Xn] = n x E[X]]= np.



Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.
We want to calculate E[Y].
Method 1: We calculate the distribution of Y:
PriY =yl =PriXeg '(y)] where g~' (x) = {x e R: g(x) = y}.
This is typically rather tedious!
Method 2: We use the following result.

Theorem:
E[g(X)] = Y. g(x)Pr[X = x].
Proof: X
ElgX¥] = YLoX(@)Prol=}, ¥, g(X(@)Prlol
X weX-1(x)
= Y Y 9xPrlel=Yax) Y Prlo]
X weX~1(x) X weX—1(x)

Y a(x)Pr[X = x].



An Example
Let X be uniform in {—2,—-1,0,1,2,3}.

Let also g(X) = X2. Then (method 2)

3
1
ElgX¥)] = Y x5
X=-2
1 19
= {44140+ 1+449) 0=

Method 1 - We find the distribution of Y = X2:

4, w.p. §
Y — 1, w.p. §
0, w.p. e
9, wp. g5

Thus, 2 2 1 1 19



Center of Mass

The expected value has a center of mass interpretation:

0.3 0.7
O
1
0.7
an(an —p)=0
S p= Zanpn = E[X]

pa(az — p)

;;;;;

. .
........




Monotonicity

Definition

Let X, Y be two random variables on 2. We write X < Y if
X(w) < Y(w) for all € Q, and similarly for X > Y and X > a
for some constant a.

Facts

(a) If X >0, then E[X] > 0.

(b) If X <Y, then E[X] < E[Y].

Proof

(a) If X > 0, every value a of X is nonnegative. Hence,

E[X]=) aPr[X=a] > 0.

(b) X<Y=Y—X>0= E[Y]-E[X]=E[Y—-X]>0.

Example: =

B=UnAn=15(0) < Lm1a,(®) = PrlUnAm] < Lm PrlAm].



Summary

| Random Variables|

v

A random variable X is a function X : Q — R.

PriX = a] := Pr[X~"(a)] = Prl{w | X(®) = a}].

PriX € Al := Pr[X—1(A)].

The distribution of X is the list of possible values and their
probability: {(a, Pr[X = a]),ac «}.

E[X] =Y aPr[X=a].

Expectation is Linear.
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