CS70: Random Variables (contd.)

Random Variables: Expectation

- 1. Random Variables: Brief Review
- 2. Expectation and properties
- 3. Important Distributions

Random Variables: Definitions

Definition

A random variable, *X*, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \mathfrak{R}$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$\Pr[X=a]=\Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$\Pr[X \in A] = \Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, \Pr[X = a]) : a \in \mathscr{A}\},\$$

where \mathscr{A} is the *range* of *X*. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}.$

Definition: The **expected value** (or mean, or expectation) of a random variable *X* is

$$E[X] = \sum_{a} a \times \Pr[X = a].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

An Example

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$ X = number of H's: $\{3, 2, 2, 2, 1, 1, 1, 0\}.$ Thus,

$$\sum_{\omega} X(\omega) \Pr[\omega] = \{3 + 2 + 2 + 2 + 1 + 1 + 1 + 0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times \Pr[X=a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

Win or Lose.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable *X*: {*HHH*, *HHT*, *HTH*, *HTT*, *THH*, *TTT*, *TTH*, *TTT*} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

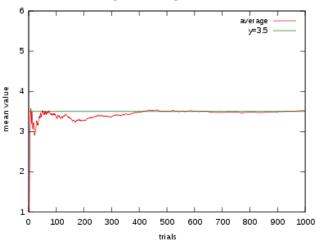
The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}, \text{ when } n \gg 1.$$

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

Law of Large Numbers

An Illustration: Rolling Dice



average dice value against number of rolls

Indicators

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Linearity of Expectation

Theorem: Expectation is linear

$$E[a_1X_1+\cdots+a_nX_n]=a_1E[X_1]+\cdots+a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \dots + a_n X_n$ has had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Using Linearity - 1: Pips (dots) on dice

Roll a die *n* times.

 X_m = number of pips on roll m.

 $X = X_1 + \cdots + X_n$ = total number of pips in *n* rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}$$

Note: Computing $\sum_{x} xPr[X = x]$ directly is not easy!

Using Linearity - 2: Random assignments Example

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where $X_m = 1$ {student *m* gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the *n* assignments
= 1.

Note that linearity holds even though the X_m are not independent. Note: What is Pr[X = m]? Tricky

Using Linearity - 3: Binomial Distribution.

Flip *n* coins with heads probability *p*. *X* - number of heads Binomial Distibution: Pr[X = i], for each *i*.

$$\Pr[X=i] = \binom{n}{i} p^i (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$ Moreover $X = X_1 + \cdots + X_n$ and $E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$ Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of Y:

 $Pr[Y = y] = Pr[X \in g^{-1}(y)]$ where $g^{-1}(x) = \{x \in \mathfrak{R} : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$$

Proof:

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$

=
$$\sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

=
$$\sum_{x} g(x) Pr[X = x].$$

An Example

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

= {4+1+0+1+4+9} $\frac{1}{6} = \frac{19}{6}$.

Method 1 - We find the distribution of $Y = X^2$:

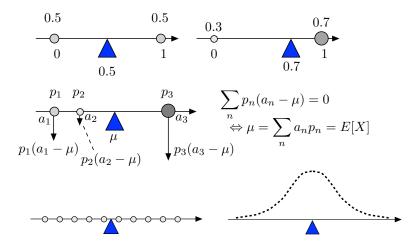
$$Y = \begin{cases} 4, & \text{w.p.} \ \frac{2}{6} \\ 1, & \text{w.p.} \ \frac{2}{6} \\ 0, & \text{w.p.} \ \frac{1}{6} \\ 9, & \text{w.p.} \ \frac{1}{6}. \end{cases}$$

Thus,

$$E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$$

Center of Mass

The expected value has a center of mass interpretation:



Monotonicity

Definition

Let *X*, *Y* be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant *a*.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$. (b) If $X \le Y$, then $E[X] \le E[Y]$. **Proof**

(a) If $X \ge 0$, every value *a* of *X* is nonnegative. Hence,

$$E[X] = \sum_{a} aPr[X = a] \ge 0.$$

(b)
$$X \leq Y \Rightarrow Y - X \geq 0 \Rightarrow E[Y] - E[X] = E[Y - X] \geq 0.$$

Example:

$$B = \cup_m A_m \Rightarrow \mathbf{1}_B(\omega) \leq \sum_m \mathbf{1}_{A_m}(\omega) \Rightarrow \Pr[\cup_m A_m] \leq \sum_m \Pr[A_m].$$

Summary

Random Variables

• A random variable X is a function $X : \Omega \to \mathfrak{R}$.

•
$$Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$$

•
$$Pr[X \in A] := Pr[X^{-1}(A)].$$

► The distribution of X is the list of possible values and their probability: {(a, Pr[X = a]), a ∈ 𝒴}.

•
$$E[X] := \sum_a a Pr[X = a].$$

Expectation is Linear.