CS70: Random Variables (contd.)

Random Variables: Expectation

CS70: Random Variables (contd.)

Random Variables: Expectation

- Random Variables: Brief Review
- 2. Expectation and properties
- 3. Important Distributions

Random Variables: Definitions Definition

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X:\Omega\to\Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \Re$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X=a]): a \in \mathscr{A}\},$$

where \mathscr{A} is the *range* of X.

Definition

A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \Re$.

Thus, $X(\cdot)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions

(a) For $a \in \Re$, one defines

$$X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}.$$

(b) For $A \subset \mathfrak{R}$, one defines

$$X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}.$$

(c) The probability that X = a is defined as

$$Pr[X = a] = Pr[X^{-1}(a)].$$

(d) The probability that $X \in A$ is defined as

$$Pr[X \in A] = Pr[X^{-1}(A)].$$

(e) The distribution of a random variable X, is

$$\{(a, Pr[X = a]) : a \in \mathscr{A}\},\$$

where \mathscr{A} is the *range* of X. That is, $\mathscr{A} = \{X(\omega), \omega \in \Omega\}$.

Definition: The expected value

Definition: The **expected value** (or mean, or expectation)

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Theorem:

Definition: The **expected value** (or mean, or expectation) of a random variable X is

$$E[X] = \sum_{a} a \times Pr[X = a].$$

Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

Flip a fair coin three times.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

Flip a fair coin three times.

 $\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$

X = number of H's: $\{3,2,2,2,1,1,1,0\}$.

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's: $\{3,2,2,2,1,1,1,0\}$.

Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

$$X = \text{number of } H$$
's: $\{3, 2, 2, 2, 1, 1, 1, 0\}$.

Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

Expected winnings for heads/tails games, with 3 flips?

$$E[X] = 3 \times \frac{1}{8}$$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8}$$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8}$$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: $\{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\} \rightarrow \{3,1,1,-1,1,-1,-1,-3\}.$

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}$$
, when $n\gg 1$.

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}$$
, when $n\gg 1$.

The fact that this average converges to E[X] is a theorem:

Expected winnings for heads/tails games, with 3 flips? Recall the definition of the random variable X: {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} \rightarrow {3,1,1,-1,1,-1,-3}.

$$E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0.$$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect! It is the average value per experiment, if you perform the experiment many times:

$$\frac{X_1+\cdots+X_n}{n}$$
, when $n\gg 1$.

The fact that this average converges to E[X] is a theorem: the Law of Large Numbers. (See later.)

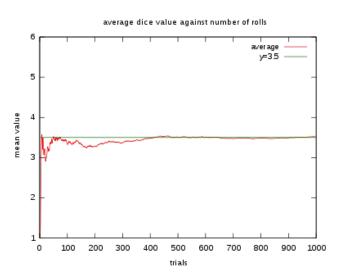
Law of Large Numbers

Law of Large Numbers

An Illustration: Rolling Dice

Law of Large Numbers

An Illustration: Rolling Dice



Definition

Definition

Let A be an event. The random variable X defined by

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that
$$Pr[X = 1] =$$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that
$$Pr[X = 1] = Pr[A]$$
 and $Pr[X = 0] =$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A].

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Theorem:

Theorem: Expectation is linear

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1+\cdots+a_nX_n]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \cdots + a_nX_n] = \sum_{\omega} (a_1X_1 + \cdots + a_nX_n)(\omega)Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note:

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \cdots + a_n X_n$ has had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Roll a die n times.

Roll a die n times.

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

Roll a die *n* times.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n],$

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Roll a die n times.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} =$$

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} =$$

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}$$
.

Roll a die n times.

 X_m = number of pips on roll m.

$$X = X_1 + \cdots + X_n$$
 = total number of pips in n rolls.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because the X_m have the same distribution

Now,

$$E[X_1] = 1 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{6 \times 7}{2} \times \frac{1}{6} = \frac{7}{2}.$$

Hence,

$$E[X]=\frac{7n}{2}$$
.

Note: Computing $\sum_{x} xPr[X = x]$ directly is not easy!

Hand out assignments at random to *n* students.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where

 $X_m = 1$ {student m gets his/her own assignment back}.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

 $X = X_1 + \cdots + X_n$ where

 $X_m = 1$ {student m gets his/her own assignment back}.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

$$X_m = 1$$
{student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \cdots + X_n]$$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n],$

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

$$X_m = 1$$
{student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where $X_m = 1$ {student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$,

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where $X_m = 1$ {student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \dots + X_n]$$

= $E[X_1] + \dots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$,

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where $X_m = 1$ {student m gets his/her own assignment back}.

```
E[X] = E[X_1 + \cdots + X_n]
= E[X_1] + \cdots + E[X_n], by linearity
= nE[X_1], because all the X_m have the same distribution
= nPr[X_1 = 1], because X_1 is an indicator
```

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

```
E[X] = E[X_1 + \cdots + X_n]
= E[X_1] + \cdots + E[X_n], by linearity
= nE[X_1], because all the X_m have the same distribution
= nPr[X_1 = 1], because X_1 is an indicator
= n(1/n),
```

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the n assignments

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where $X_m = 1$ {student m gets his/her own assignment back}.

```
E[X] = E[X_1 + \cdots + X_n]
= E[X_1] + \cdots + E[X_n], by linearity
= nE[X_1], because all the X_m have the same distribution
= nPr[X_1 = 1], because X_1 is an indicator
= n(1/n), because student 1 is equally likely
to get any one of the n assignments
= 1.
```

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the n assignments
= 1.

Note that linearity holds even though the X_m are not independent.

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the n assignments
= 1.

Note that linearity holds even though the X_m are not independent.

Note: What is Pr[X = m]?

Hand out assignments at random to *n* students.

X = number of students that get their own assignment back.

$$X = X_1 + \cdots + X_n$$
 where

 $X_m = 1$ {student m gets his/her own assignment back}.

One has

$$E[X] = E[X_1 + \cdots + X_n]$$

= $E[X_1] + \cdots + E[X_n]$, by linearity
= $nE[X_1]$, because all the X_m have the same distribution
= $nPr[X_1 = 1]$, because X_1 is an indicator
= $n(1/n)$, because student 1 is equally likely
to get any one of the n assignments
= 1.

Note that linearity holds even though the X_m are not independent.

Note: What is Pr[X = m]? Tricky

Flip n coins with heads probability p.

Flip n coins with heads probability p. X - number of heads

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i]$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ...

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ... Or...

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i]$$

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

Calculating E[g(X)]

Calculating E[g(X)]Let Y = g(X).

Calculating E[g(X)]

Let Y = g(X). Assume that we know the distribution of X.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{X} \sum_{\omega \in X^{-1}(X)} g(X(\omega))Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)] \text{ where } g^{-1}(x) = \{x \in \Re : g(x) = y\}.$$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega)) Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega)) Pr[\omega]$$
$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x) Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

Let Y = g(X). Assume that we know the distribution of X.

We want to calculate E[Y].

Method 1: We calculate the distribution of *Y*:

$$Pr[Y = y] = Pr[X \in g^{-1}(y)]$$
 where $g^{-1}(x) = \{x \in \Re : g(x) = y\}.$

This is typically rather tedious!

Method 2: We use the following result.

Theorem:

$$E[g(X)] = \sum_{x} g(x) Pr[X = x].$$

$$E[g(X)] = \sum_{\omega} g(X(\omega))Pr[\omega] = \sum_{x} \sum_{\omega \in X^{-1}(x)} g(X(\omega))Pr[\omega]$$

$$= \sum_{x} \sum_{\omega \in X^{-1}(x)} g(x)Pr[\omega] = \sum_{x} g(x) \sum_{\omega \in X^{-1}(x)} Pr[\omega]$$

$$= \sum_{x} g(x)Pr[X = x].$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$.

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^2 \frac{1}{6}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Let *X* be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $q(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of
$$Y=X^2$$
:
$$Y=\left\{\begin{array}{ccc} 4, & \text{w.p. } \frac{2}{6} \end{array}\right.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \end{cases}$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \left\{ \begin{array}{ll} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6}. \end{array} \right.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

$$Y = \left\{ \begin{array}{ll} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6}. \end{array} \right.$$

Let X be uniform in $\{-2, -1, 0, 1, 2, 3\}$.

Let also $g(X) = X^2$. Then (method 2)

$$E[g(X)] = \sum_{x=-2}^{3} x^{2} \frac{1}{6}$$

$$= \{4+1+0+1+4+9\} \frac{1}{6} = \frac{19}{6}.$$

Method 1 - We find the distribution of $Y = X^2$:

$$Y = \begin{cases} 4, & \text{w.p. } \frac{2}{6} \\ 1, & \text{w.p. } \frac{2}{6} \\ 0, & \text{w.p. } \frac{1}{6} \\ 9, & \text{w.p. } \frac{1}{6} \end{cases}$$

Thus, $E[Y] = 4\frac{2}{6} + 1\frac{2}{6} + 0\frac{1}{6} + 9\frac{1}{6} = \frac{19}{6}.$

$$+9\frac{1}{6}=\frac{19}{6}.$$

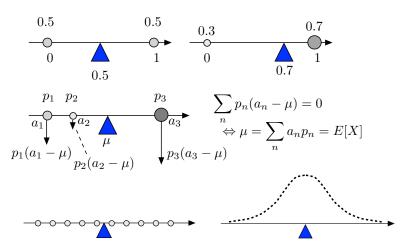
Center of Mass

Center of Mass

The expected value has a *center of mass* interpretation:

Center of Mass

The expected value has a *center of mass* interpretation:



Definition

Let X, Y be two random variables on Ω .

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$,

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

(a) If $X \ge 0$, then $E[X] \ge 0$.

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative.

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative. Hence,

$$E[X] = \sum_{a} aPr[X = a] \ge 0.$$

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

(b)
$$X \leq Y \Rightarrow Y - X \geq 0$$

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

(b)
$$X \le Y \Rightarrow Y - X \ge 0 \Rightarrow E[Y] - E[X] = E[Y - X] \ge 0$$
.

Example:

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

(b)
$$X \le Y \Rightarrow Y - X \ge 0 \Rightarrow E[Y] - E[X] = E[Y - X] \ge 0$$
.

Example:

$$B = \bigcup_m A_m \Rightarrow 1_B(\omega) \leq \sum_m 1_{A_m}(\omega)$$

Definition

Let X, Y be two random variables on Ω . We write $X \leq Y$ if $X(\omega) \leq Y(\omega)$ for all $\omega \in \Omega$, and similarly for $X \geq Y$ and $X \geq a$ for some constant a.

Facts

- (a) If $X \ge 0$, then $E[X] \ge 0$.
- (b) If $X \leq Y$, then $E[X] \leq E[Y]$.

Proof

(a) If $X \ge 0$, every value a of X is nonnegative. Hence,

$$E[X] = \sum_{a} a Pr[X = a] \ge 0.$$

(b)
$$X \leq Y \Rightarrow Y - X \geq 0 \Rightarrow E[Y] - E[X] = E[Y - X] \geq 0$$
.

Example:

$$B = \bigcup_m A_m \Rightarrow 1_B(\omega) \leq \sum_m 1_{A_m}(\omega) \Rightarrow Pr[\bigcup_m A_m] \leq \sum_m Pr[A_m].$$

Random Variables

▶ A random variable X is a function $X : \Omega \to \Re$.

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- $\blacktriangleright E[X] := \sum_a aPr[X = a].$

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- $\blacktriangleright E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.

- ▶ A random variable X is a function $X : \Omega \to \Re$.
- ► $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶ $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability: $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- $\blacktriangleright E[X] := \sum_a aPr[X = a].$
- Expectation is Linear.