
CS70: Random Variables (contd.)

Important Distributions

1. Expectation: Brief Review
2. Important Distributions: Binomial, Uniform, Geometric,

Poisson

Review: Expectation

I E [X ] := ∑x xPr [X = x ] = ∑ω X (ω)Pr [ω].

I E [g(X )] = ∑x g(x)Pr [X = x ]

= ∑ω g(X (ω))Pr [ω]

I E [aX + bY + c] = aE [X ] + bE [Y ] + c.

Linearity of Expectation

Theorem: Expectation is linear

E [a1X1 + · · ·+ anXn] = a1E [X1] + · · ·+ anE [Xn].

Proof:

E [a1X1 + · · ·+ anXn]

= ∑
ω

(a1X1 + · · ·+ anXn)(ω)Pr [ω]

= ∑
ω

(a1X1(ω) + · · ·+ anXn(ω))Pr [ω]

= a1 ∑
ω

X1(ω)Pr [ω] + · · ·+ an ∑
ω

Xn(ω)Pr [ω]

= a1E [X1] + · · ·+ anE [Xn].

Note: If we had defined Y = a1X1 + · · ·+ anXn has had tried to
compute E [Y ] = ∑y yPr [Y = y ], we would have been in trouble!

Using Linearity: Binomial Distribution.

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr [X = i], for each i .

Pr [X = i] =

(
n
i

)
pi(1−p)n−i .

E [X ] = ∑
i

i×Pr [X = i] = ∑
i

i×
(

n
i

)
pi(1−p)n−i .

Uh oh. ... Or... a better approach: Let

Xi =

{
1 if i th flip is heads
0 otherwise

E [Xi ] = 1×Pr [“heads′′] + 0×Pr [“tails′′] = p.

Moreover X = X1 + · · ·Xn and

E [X ] = E [X1] + E [X2] + · · ·E [Xn] = n×E [Xi ]= np.

Center of Mass

The expected value has a center of mass interpretation:
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Indicator Random Variable

Definition
Let A be an event. The random variable X defined by

X (ω) =

{
1, if ω ∈ A
0, if ω /∈ A

is called the indicator of the event A.

Note that Pr [X = 1] = Pr [A] and Pr [X = 0] = 1−Pr [A].

Hence,

E [X ] = 1×Pr [X = 1] + 0×Pr [X = 0] = Pr [A].

This random variable X (ω) is sometimes written as

1{ω ∈ A} or 1A(ω).

Thus, we will write X = 1A.



Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips
(dots). Then X is equally likely to take any of the values
{1,2, . . . ,6}. We say that X is uniformly distributed in
{1,2, . . . ,6}.
More generally, we say that X is uniformly distributed in
{1,2, . . . ,n} if Pr [X = m] = 1/n for m = 1,2, . . . ,n.
In that case,

E [X ] =
n

∑
m=1

mPr [X = m] =
n

∑
m=1

m× 1
n

=
1
n

n(n + 1)

2
=

n + 1
2

.

Geometric Distribution
Let’s flip a coin with Pr [H] = p until we get H.

For instance:

ω1 = H, or
ω2 = T H, or
ω3 = T T H, or
ωn = T T T T · · · T H.

Note that Ω = {ωn,n = 1,2, . . .}.
Let X be the number of flips until the first H. Then, X (ωn) = n.

Also,
Pr [X = n] = (1−p)n−1p, n ≥ 1.

Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Geometric Distribution

Pr [X = n] = (1−p)n−1p,n ≥ 1.

Note that
∞

∑
n=1

Pr [Xn] =
∞

∑
n=1

(1−p)n−1p = p
∞

∑
n=1

(1−p)n−1 = p
∞

∑
n=0

(1−p)n.

Now, if |a|< 1, then S := ∑∞
n=0 an = 1

1−a . Indeed,

S = 1 + a + a2 + a3 + · · ·
aS = a + a2 + a3 + a4 + · · ·

(1−a)S = 1 + a−a + a2−a2 + · · ·= 1.

Hence,
∞

∑
n=1

Pr [Xn] = p
1

1− (1−p)
= 1.

Geometric Distribution: Expectation

X =D G(p), i.e., Pr [X = n] = (1−p)n−1p,n ≥ 1.

One has

E [X ] =
∞

∑
n=1

nPr [X = n] =
∞

∑
n=1

n(1−p)n−1p.

Thus,

E [X ] = p + 2(1−p)p + 3(1−p)2p + 4(1−p)3p + · · ·
(1−p)E [X ] = (1−p)p + 2(1−p)2p + 3(1−p)3p + · · ·

pE [X ] = p + (1−p)p + (1−p)2p + (1−p)3p + · · ·
by subtracting the previous two identities

=
∞

∑
n=1

Pr [X = n] = 1.

Hence,

E [X ] =
1
p
.

Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n
coupons.
Outcomes: {123145...,56765...}
Random Variable: X - length of outcome.

E [X ]=?



Time to collect coupons

X -time to get n coupons.

X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.

X2 - time to get second coupon after getting first.

Pr [“get second coupon”|“got milk—- first coupon”] = n−1
n

E [X2]? Geometric ! ! ! =⇒ E [X2] = 1
p = 1

n−1
n

= n
n−1 .

Pr [“getting i th coupon|“got i−1rst coupons”] = n−(i−1)
n = n−i+1

n

E [Xi ] = 1
p = n

n−i+1 , i = 1,2, . . . ,n.

E [X ] = E [X1] + · · ·+ E [Xn] =
n
n

+
n

n−1
+

n
n−2

+ · · ·+ n
1

= n(1 +
1
2

+ · · ·+ 1
n

) =: nH(n)≈ n(lnn + γ)

Review: Harmonic sum

H(n) = 1 +
1
2

+ · · ·+ 1
n
≈
∫ n

1

1
x

dx = ln(n).

.

A good approximation is

H(n)≈ ln(n) + γ where γ ≈ 0.58 (Euler-Mascheroni constant).

Geometric Distribution: Memoryless
Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n + m|X > n] =
Pr [X > n + m and X > n]

Pr [X > n]

=
Pr [X > n + m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].

Geometric Distribution: Memoryless - Interpretation

Pr [X > n + m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n + m|X > n] = Pr [A|B] = Pr [A] = Pr [X > m].

The coin is memoryless, therefore, so is X .

Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values {0,1,2, . . .}, one
has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

[See later for a proof.]

If X = G(p), then Pr [X ≥ i] = Pr [X > i−1] = (1−p)i−1.

Hence,

E [X ] =
∞

∑
i=1

(1−p)i−1 =
∞

∑
i=0

(1−p)i =
1

1− (1−p)
=

1
p
.

Expected Value of Integer RV
Theorem: For a r.v. X that takes values in {0,1,2, . . .}, one has

E [X ] =
∞

∑
i=1

Pr [X ≥ i].

Proof: One has

E [X ] =
∞

∑
i=1

i×Pr [X = i]

=
∞

∑
i=1

i{Pr [X ≥ i]−Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− i×Pr [X ≥ i + 1]}

=
∞

∑
i=1
{i×Pr [X ≥ i]− (i−1)×Pr [X ≥ i]}

=
∞

∑
i=1

Pr [X ≥ i].



Poisson

Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).

Poisson Distribution is distribution of X “for large n.”

Poisson

Experiment: flip a coin n times. The coin is such that
Pr [H] = λ/n.
Random Variable: X - number of heads. Thus, X = B(n,λ/n).
Poisson Distribution is distribution of X “for large n.”
We expect X � n. For m� n one has

Pr [X = m] =

(
n
m

)
pm(1−p)n−m, with p = λ/n

=
n(n−1) · · ·(n−m + 1)

m!

(
λ
n

)m(
1− λ

n

)n−m

=
n(n−1) · · ·(n−m + 1)

nm
λ m

m!

(
1− λ

n

)n−m

≈(1) λ m

m!

(
1− λ

n

)n−m

≈ λ m

m!

(
1− λ

n

)n

≈(2) λ m

m!
e−λ .

For (1) we used m� n; for (2) we used (1−a/n)≈ e−a/n for a/n� 1.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Fact: E [X ] = λ .

Proof:

E [X ] =
∞

∑
m=1

m× λ m

m!
e−λ = e−λ

∞

∑
m=1

λ m

(m−1)!

= e−λ
∞

∑
m=0

λ m+1

m!
= e−λ λ

∞

∑
m=0

λ m

m!

= e−λ λeλ = λ .

Summary.

Distributions

I U[1, . . . ,n] : Pr [X = m] = 1
n ,m = 1, . . . ,n;

E [X ] = n+1
2 ;

I B(n,p) : Pr [X = m] =
(n

m

)
pm(1−p)n−m,m = 0, . . . ,n;

E [X ] = np;

I G(p) : Pr [X = n] = (1−p)n−1p,n = 1,2, . . . ;
E [X ] = 1

p ;

I P(λ ) : Pr [X = n] = λ n

n! e−λ ,n ≥ 0;
E [X ] = λ .


