CS70: Random Variables (contd.)

Important Distributions

CS70: Random Variables (contd.)

Important Distributions

- 1. Expectation: Brief Review
- 2. Important Distributions: Binomial, Uniform, Geometric, Poisson

$$E[X] := \sum_{X} x Pr[X = X] = \sum_{\omega} X(\omega) Pr[\omega].$$

$$E[X] := \sum_{X} x Pr[X = X] = \sum_{\omega} X(\omega) Pr[\omega].$$

$$E[g(X)] = \sum_{x} g(x) Pr[X = x]$$

$$E[X] := \sum_{X} x Pr[X = X] = \sum_{\omega} X(\omega) Pr[\omega].$$

$$E[g(X)] = \sum_{X} g(X) Pr[X = X]$$
$$= \sum_{\omega} g(X(\omega)) Pr[\omega]$$

•
$$E[X] := \sum_{X} x Pr[X = X] = \sum_{\omega} X(\omega) Pr[\omega].$$

$$E[g(X)] = \sum_{X} g(X) Pr[X = X]$$

$$= \sum_{\omega} g(X(\omega)) Pr[\omega]$$

•
$$E[aX + bY + c] = aE[X] + bE[Y] + c$$
.

Theorem:

Theorem: Expectation is linear

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1+\cdots+a_nX_n]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \cdots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \cdots + a_nX_n)(\omega)Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note:

Theorem: Expectation is linear

$$E[a_1X_1 + \cdots + a_nX_n] = a_1E[X_1] + \cdots + a_nE[X_n].$$

Proof:

$$E[a_1X_1 + \dots + a_nX_n]$$

$$= \sum_{\omega} (a_1X_1 + \dots + a_nX_n)(\omega)Pr[\omega]$$

$$= \sum_{\omega} (a_1X_1(\omega) + \dots + a_nX_n(\omega))Pr[\omega]$$

$$= a_1\sum_{\omega} X_1(\omega)Pr[\omega] + \dots + a_n\sum_{\omega} X_n(\omega)Pr[\omega]$$

$$= a_1E[X_1] + \dots + a_nE[X_n].$$

Note: If we had defined $Y = a_1 X_1 + \cdots + a_n X_n$ has had tried to compute $E[Y] = \sum_y y Pr[Y = y]$, we would have been in trouble!

Flip n coins with heads probability p.

Flip n coins with heads probability p. X - number of heads

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$\frac{n}{n} = \frac{n}{n}$$

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

E[X]

Flip n coins with heads probability p. X - number of heads

Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ...

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ... Or...

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

Uh oh. ... Or... a better approach: Let

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i]$$

Flip n coins with heads probability p. X - number of heads Binomial Distibution: Pr[X = i], for each i.

$$Pr[X=i] = \binom{n}{i} p^{i} (1-p)^{n-i}.$$

$$E[X] = \sum_{i} i \times Pr[X = i] = \sum_{i} i \times \binom{n}{i} p^{i} (1 - p)^{n - i}.$$

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"] = p.$$

Moreover
$$X = X_1 + \cdots X_n$$
 and

$$E[X] = E[X_1] + E[X_2] + \cdots + E[X_n] = n \times E[X_i] = np.$$

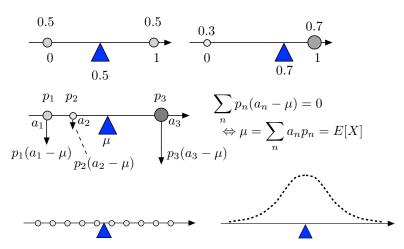
Center of Mass

Center of Mass

The expected value has a *center of mass* interpretation:

Center of Mass

The expected value has a *center of mass* interpretation:



Definition

Definition

Let A be an event. The random variable X defined by

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that
$$Pr[X = 1] =$$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that
$$Pr[X = 1] = Pr[A]$$
 and $Pr[X = 0] =$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A].

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Definition

Let A be an event. The random variable X defined by

$$X(\omega) = \begin{cases} 1, & \text{if } \omega \in A \\ 0, & \text{if } \omega \notin A \end{cases}$$

is called the indicator of the event A.

Note that Pr[X = 1] = Pr[A] and Pr[X = 0] = 1 - Pr[A]. Hence,

$$E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A].$$

This random variable $X(\omega)$ is sometimes written as

$$1\{\omega \in A\}$$
 or $1_A(\omega)$.

Thus, we will write $X = 1_A$.

Roll a six-sided balanced die. Let X be the number of pips (dots).

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$.

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m]$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n}$$

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1,2,\ldots,6\}$. We say that X is *uniformly distributed* in $\{1,2,\ldots,6\}$.

More generally, we say that X is uniformly distributed in $\{1,2,\ldots,n\}$ if Pr[X=m]=1/n for $m=1,2,\ldots,n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or

Let's flip a coin with Pr[H] = p until we get H.

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or $\omega_2 = T\ H$, or $\omega_3 = T\ T\ H$, or

Let's flip a coin with Pr[H] = p until we get H.

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) =$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let *X* be the number of flips until the first *H*. Then, $X(\omega_n) = n$.

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] =$$

Let's flip a coin with Pr[H] = p until we get H.

For instance:

$$\omega_1 = H$$
, or $\omega_2 = T H$, or $\omega_3 = T T H$, or $\omega_n = T T T T \cdots T H$.

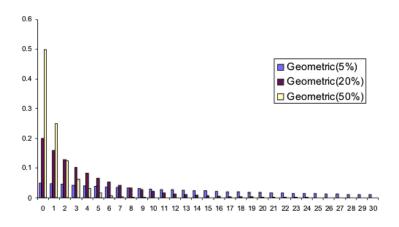
Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

$$Pr[X = n] = (1 - p)^{n-1}p, \ n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$



$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1}$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if
$$|a| < 1$$
, then $S := \sum_{n=0}^{\infty} a^n =$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if
$$|a| < 1$$
, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$.

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$

 $aS = a + a^2 + a^3 + a^4 + \cdots$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} =$$

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1 - a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

$$\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} = 1.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1-p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^{2}p + 4(1-p)^{3}p + \cdots$$

$$(1-p)E[X] = (1-p)p + 2(1-p)^{2}p + 3(1-p)^{3}p + \cdots$$

$$pE[X] = p + (1-p)p + (1-p)^{2}p + (1-p)^{3}p + \cdots$$
by subtracting the previous two identities

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + \cdots$$

$$(1-p)E[X] = (1-p)p + 2(1-p)^2p + 3(1-p)^3p + \cdots$$

$$pE[X] = p + (1-p)p + (1-p)^2p + (1-p)^3p + \cdots$$
by subtracting the previous two identities
$$= \sum_{n=0}^{\infty} Pr[X = n] = 0$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=1}^{\infty} Pr[X=n] = 1.$$

$$X =_D G(p)$$
, i.e., $Pr[X = n] = (1 - p)^{n-1}p, n \ge 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^2p+4(1-p)^3p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^2p+3(1-p)^3p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^2p+(1-p)^3p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=0}^{\infty} Pr[X=n] = 1.$$

$$E[X] = \frac{1}{n}$$
.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: {123145...,56765...}

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Experiment: Get coupons at random from *n* until collect all *n* coupons.

Outcomes: {123145...,56765...}

Random Variable: *X* - length of outcome.

Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: $\{123145...,56765...\}$

Random Variable: *X* - length of outcome.

E[X]=?

Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: $\{123145...,56765...\}$

Random Variable: *X* - length of outcome.

E[X]=?

X-time to get *n* coupons.

X-time to get *n* coupons.

 X_1 - time to get first coupon.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

Pr["get second coupon"|"got milk "]

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$?

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric!

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"|"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric!!

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"|"got milk first coupon"] = \frac{n-1}{n}$

 $E[X_2]$? Geometric!!!

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\Longrightarrow E[X_2] = \frac{1}{p} =$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\Longrightarrow E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{\rho-1}{\rho}}$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\Longrightarrow E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n-1}} = \frac{n}{n-1}$.

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{2}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{\rho}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

 $E[X_i]$

X-time to get *n* coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{2}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$$

$$E[X_i] = \frac{1}{p}$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{p-1}{p}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1},$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{p-1}{2}} = \frac{n}{n-1}$.

$$Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$$

$$E[X_i] = \frac{1}{\rho} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \cdots + E[X_n] =$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{p-1}{2}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{p}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1 rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n)$$

X-time to get n coupons.

 X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 X_2 - time to get second coupon after getting first.

 $Pr["get second coupon"]"got milk first coupon"] = \frac{n-1}{n}$

$$E[X_2]$$
? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{p-1}{2}} = \frac{n}{n-1}$.

 $Pr["getting ith coupon|"got i - 1rst coupons"] = \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}$

$$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, ..., n.$$

$$E[X] = E[X_1] + \dots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \dots + \frac{n}{1}$$
$$= n(1 + \frac{1}{2} + \dots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)$$

Review: Harmonic sum

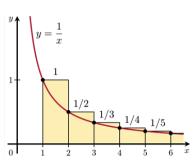
$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.

Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

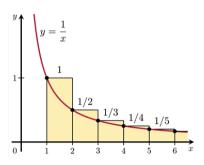
.



Review: Harmonic sum

$$H(n) = 1 + \frac{1}{2} + \dots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} dx = \ln(n).$$

.



A good approximation is

 $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Let *X* be G(p). Then, for $n \ge 0$,

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] =$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m|X > n] =$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} =$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

Let *X* be G(p). Then, for $n \ge 0$,

$$Pr[X > n] = Pr[$$
 first n flips are $T] = (1 - p)^n$.

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

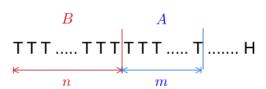
$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

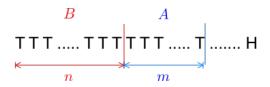
$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$



$$Pr[X > n + m | X > n] = Pr[X > m], m, n \ge 0.$$

$$Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

$$Pr[X>n+m|X>n]=Pr[X>m], m,n\geq 0.$$



$$Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m].$$

The coin is memoryless, therefore, so is X.

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If
$$X = G(p)$$
, then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i-1}$.

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i - 1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-\rho)^{i-1} = \sum_{i=0}^{\infty} (1-\rho)^{i}$$

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i - 1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{1-(1-p)}$$

Theorem: For a r.v. X that takes the values $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

[See later for a proof.]

If X = G(p), then $Pr[X \ge i] = Pr[X > i - 1] = (1 - p)^{i - 1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1-p)^{i-1} = \sum_{i=0}^{\infty} (1-p)^i = \frac{1}{1-(1-p)} = \frac{1}{p}.$$

Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X=i]$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$
$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

Theorem: For a r.v. X that takes values in $\{0,1,2,\ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

Theorem: For a r.v. X that takes values in $\{0, 1, 2, ...\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \ge i].$$

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{ Pr[X \ge i] - Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - i \times Pr[X \ge i + 1] \}$$

$$= \sum_{i=1}^{\infty} \{ i \times Pr[X \ge i] - (i - 1) \times Pr[X \ge i] \}$$

$$= \sum_{i=1}^{\infty} Pr[X \ge i].$$

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n$.

Random Variable: X - number of heads.

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Experiment: flip a coin *n* times. The coin is such that

 $Pr[H] = \lambda/n$.

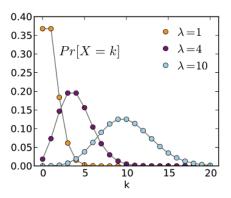
Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of *X* "for large *n*."



Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

We expect $X \ll n$.

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X "for large n."

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = {n \choose m} p^m (1-p)^{n-m}$$
, with $p =$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = {n \choose m} p^m (1-p)^{n-m}$$
, with $p = \lambda/n$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx \binom{1}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx^{(2)} \frac{\lambda^m}{m!} e^{-\lambda}.$$

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx^{(2)} \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$;

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of X "for large n."

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx^{(2)} \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n) \approx e^{-a/n}$ for $a/n \ll 1$.

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda}$$

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Distributions

► *U*[1,...,*n*]:

►
$$U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$$

►
$$U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$$

 $E[X] =$

►
$$U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$$

 $E[X] = \frac{n+1}{2};$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- **▶** *B*(*n*,*p*) :

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ▶ B(n,p) : Pr[X = m] =

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X=m] = \binom{n}{m} p^m (1-p)^{n-m}, m=0,...,n;$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ▶ $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] =

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ▶ $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- **▶** *G*(*p*) :

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- G(p) : Pr[X = n] =

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ▶ $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ E[X] =

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ▶ $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- ▶ P(λ):

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $ightharpoonup P(\lambda): Pr[X=n] =$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $P(\lambda): Pr[X=n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0;$

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $P(\lambda): Pr[X=n] = \frac{\lambda^n}{n!}e^{-\lambda}, n \ge 0;$ E[X] =

- ► $U[1,...,n]: Pr[X=m] = \frac{1}{n}, m=1,...,n;$ $E[X] = \frac{n+1}{2};$
- ► $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0,...,n;$ E[X] = np;
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$
- $P(\lambda): Pr[X=n] = \frac{\lambda^n}{n!}e^{-\lambda}, n \ge 0;$ $E[X] = \lambda.$