Recap of Distributions, Variance

- 1. Review: Distributions (Poisson)
- 2. Variance
- 3. Independence of Random Variables

Review: Distributions

•
$$U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$$

 $E[X] = \frac{n+1}{2};$

• $B(n,p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, ..., n;$ E[X] = np;

•
$$G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$$

 $E[X] = \frac{1}{p};$

$$P(\lambda): Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \ge 0; \\ E[X] = \lambda.$$

Poisson

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*."

The Poisson distribution shows up in a lot of "real world" applications. Here is a partial list:

- the number of bankruptcies that are filed in a month
- the number of arrivals at a car wash in one hour
- the number of arrivals at the Cory & Hearst bus-stop
- the number of network failures per day
- the number of asthma patient arrivals in a given hour at a walk-in clinic
- the number of customer arrivals at McDonald's per day
- the number of birth, deaths, marriages, divorces, suicides, and homicides over a given period of time
- the number of visitors to a web site per minute

Poisson

Experiment: flip a coin *n* times. The coin is such that $Pr[H] = \lambda/n$. Random Variable: *X* - number of heads. Thus, $X = B(n, \lambda/n)$. **Poisson Distribution** is distribution of *X* "for large *n*." We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = {\binom{n}{m}} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx^{(2)} \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n) \approx e^{-a/n}$ for $a/n \ll 1$.

Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Simeon Poisson

The Poisson distribution is named after:

Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.

Variance

The variance measures the deviation from the mean value. **Definition:** The variance of *X* is

$$\sigma^{2}(X) := var[X] = E[(X - E[X])^{2}].$$

 $\sigma(X)$ is called the standard deviation of *X*.

Variance and Standard Deviation

Fact:

$$var[X] = E[X^2] - E[X]^2.$$

Indeed:

$$var(X) = E[(X - E[X])^{2}]$$

= $E[X^{2} - 2XE[X] + E[X]^{2})$
= $E[X^{2}] - 2E[X]E[X] + E[X]^{2}$, by linearity
= $E[X^{2}] - E[X]^{2}$.

A simple example

This example illustrates the term 'standard deviation.'

Consider the random variable X such that

$$X = \left\{ egin{array}{ccc} \mu - \sigma, & ext{w.p. 1/2} \ \mu + \sigma, & ext{w.p. 1/2} \end{array}
ight.$$

Then, $E[X] = \mu$ and $(X - E[X])^2 = \sigma^2$. Hence,

$$var(X) = \sigma^2$$
 and $\sigma(X) = \sigma^2$

Example

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01} \end{cases}$$

Then

$$\begin{array}{rcl} E[X] &=& -1 \times 0.99 + 99 \times 0.01 = 0. \\ E[X^2] &=& 1 \times 0.99 + (99)^2 \times 0.01 \approx 100. \\ Var(X) &\approx& 100 \implies \sigma(X) \approx 10. \end{array}$$

Also,

$$E(|X|) = 1 \times 0.99 + 99 \times 0.01 = 1.98.$$

Thus, $\sigma(X) \neq E[|X - E[X]|]!$ Exercise: How big can you make $\frac{\sigma(X)}{E[|X - E[X]|]}$?

Uniform

Assume that Pr[X = i] = 1/n for $i \in \{1, ..., n\}$. Then

$$E[X] = \sum_{i=1}^{n} i \times Pr[X=i] = \frac{1}{n} \sum_{i=1}^{n} i$$
$$= \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

Also,

$$E[X^{2}] = \sum_{i=1}^{n} i^{2} Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{6}, \text{ as you can verify.}$$

This gives

$$var(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.$$

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \ge 1$. Recall E[X] = 1/p.

$$E[X^{2}] = p + 4p(1-p) + 9p(1-p)^{2} + \dots$$

-(1-p)E[X²] = -[p(1-p) + 4p(1-p)^{2} + \dots]
pE[X^{2}] = p + 3p(1-p) + 5p(1-p)^{2} + \dots
= 2(p+2p(1-p) + 3p(1-p)^{2} + \dots) E[X]!
-(p+p(1-p) + p(1-p)^{2} + \dots) E[X]!
pE[X^{2}] = 2E[X] - 1
= 2(\frac{1}{p}) - 1 = \frac{2-p}{p}

$$\Longrightarrow E[X^2] = (2-p)/p^2 \text{ and} \\ var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}. \\ \sigma(X) = \frac{\sqrt{1-p}}{p} \approx E[X] \text{ when } p \text{ is small(ish)}.$$

Fixed points.

Number of fixed points in a random permutation of *n* items. "Number of student that get homework back."

$$X=X_1+X_2\cdots+X_n$$

where X_i is indicator variable for *i*th student getting hw back.

$$E(X^{2}) = \sum_{i} E(X_{i}^{2}) + \sum_{i \neq j} E(X_{i}X_{j}).$$

= $n \times \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}$
= $1 + 1 = 2.$

$$E(X_i^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]$$

= $\frac{1}{n}$
 $E(X_iX_j) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[$ "anything else"]
= $\frac{1 \times 1 \times (n-2)!}{n!} = \frac{1}{n(n-1)}$
 $Var(X) = E(X^2) - (E(X))^2 = 2 - 1 = 1.$

Variance: binomial.

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...but there is a payoff.

Properties of variance.

- 1. $Var(cX) = c^2 Var(X)$, where c is a constant. Scales by c^2 .
- 2. Var(X+c) = Var(X), where c is a constant. Shifts center.

Proof:

$$Var(cX) = E((cX)^{2}) - (E(cX))^{2}$$

= $c^{2}E(X^{2}) - c^{2}(E(X))^{2} = c^{2}(E(X^{2}) - E(X)^{2})$
= $c^{2}Var(X)$
$$Var(X+c) = E((X+c-E(X+c))^{2})$$

= $E((X+c-E(X)-c)^{2})$
= $E((X-E(X))^{2}) = Var(X)$

Independent random variables.

Definition: Independence

The random variables X and Y are independent if and only if

$$P[Y = b | X = a] = P[Y = b]$$
, for all a and b.

Fact:

X, Y are independent if and only if

P[X = a, Y = b] = P[X = a]P[Y = b], for all *a* and *b*.

Independence: examples.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6.

Example 2

Roll two dices. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $P[X = 12, Y = 1] = 0 \neq P[X = 12]P[Y = 1] > 0$.

Mean of product of independent RVs.

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x,y)P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xyP[X = x]P[Y = y] \right]$$

$$= \sum_{x} \left[xP[X = x] \left(\sum_{y} yP[Y = y] \right) \right]$$

$$= \sum_{x} xP[X = x]E[Y] = E[X]E[Y].$$

Variance of sum of two independent random variables

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Hence,

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$
= $var(X) + var(Y)$.

Variance of Binomial Distribution.

Flip coin with heads probability *p*. *X*- how many heads?

 $X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Summary

Variance

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- ► B(n,p): $Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0,...,n;$ E[X] = np; var(X) = = np(1-p).

•
$$G(p): Pr[X = n] = (1 - p)^{n-1}p, n = 1, 2, ...;$$

 $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$