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1. Review: Distributions (Poisson)
2. Variance
3. Independence of Random Variables
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The Poisson distribution shows up in a lot of “real world”
applications. Here is a partial list:

» the number of bankruptcies that are filed in a month

» the number of arrivals at a car wash in one hour

» the number of arrivals at the Cory & Hearst bus-stop

» the number of network failures per day

» the number of asthma patient arrivals in a given hour at a

walk-in clinic
» the number of customer arrivals at McDonald’s per day

» the number of birth, deaths, marriages, divorces, suicides,
and homicides over a given period of time

» the number of visitors to a web site per minute
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Definition Poisson Distribution with parameter A > 0

m

X=P(A) < PriX=m] = %e"l,mz 0.

Fact: E[X] = A.
Proof:
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The Poisson distribution is named after:

Siméon Poisson

Siméon Denis Poisson (1781-1840)
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B. Geometric

B. Geometric (b. 300 BC)

| could not find a picture of D. Binomial, sorry.



Variance



Variance

Mean

Var =1

Var =10




Variance

Mean

Var =10

The variance measures the deviation from the mean value.



Variance

Mean

Var =10

The variance measures the deviation from the mean value.

Definition: The variance of X is



Variance

Mean

Var =1

Var =10

The variance measures the deviation from the mean value.

Definition: The variance of X is

6?(X) = var[X] = E[(X — E[X])?].



Variance

Mean

Var =1

Var =10

The variance measures the deviation from the mean value.

Definition: The variance of X is

6?(X) = var[X] = E[(X — E[X])?].

o(X) is called the standard deviation of X.



Variance

Mean

Var =1

Var =10

The variance measures the deviation from the mean value.

Definition: The variance of X is

6?(X) = var[X] = E[(X — E[X])?].

o(X) is called the standard deviation of X.



Variance and Standard Deviation

Fact:
var[X] = E[X?] — E[X]?.



Variance and Standard Deviation

Fact:
var[X] = E[X?] — E[X]?.

Indeed:

var(X) = E[(X—E[X])?]



Variance and Standard Deviation

Fact:
var[X] = E[X?] — E[X]?.

Indeed:

var(X) = E[(X—E[X])?]
—  E[X?—2XE[X]+E[X]?)



Variance and Standard Deviation

Fact:
var[X] = E[X?] — E[X]?.

Indeed:
var(X) = E[(X—E[X])?]
—  E[X2 - 2XE[X] + E[X]?)
—  E[X?-2E[X]E[X]+E[X]?,



Variance and Standard Deviation

Fact:
var[X] = E[X?] — E[X]?.

Indeed:
var(X) = E[(X - E[X])?]
= E[X?—-2XE[X]+ E[X]?)
— E[X?]—2E[X]E[X] + E[X]?, by linearity



Variance and Standard Deviation

Fact:

Indeed:

var(X) =

var[X] = E[X?] — E[X]?.

E[(X - E[X])?]
E[X? —2XE[X]+ E[X]?)
E[X?] — 2E[X]E[X] + E[X]?, by linearity

= E[X?]-E[X]?.
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Pr=10.5 T . T Pr=10.5

@] | o >

= H+a

Consider the random variable X such that

x_J] B-o w.p. 1/2
| u+o, wpo1/2.

Then, E[X] = u and (X — E[X])? = 6°. Hence,

var(X) = 6° and o(X) = o.
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Exercise: How big can you make %?
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Number of fixed points in a random permutation of nitems.
“Number of student that get homework back.”

X=Xi+Xo---+ X,

where X; is indicator variable for jth student getting hw back.
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Var(X) = E(X?) — (E(X))2=2-1=1.
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n ) n . .
e = Y2 (7)p-pr
i=0
= Really???\1##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.
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Theorem
Let X, Y be independent RVs. Then

Proof:

E[XY] = E[X]E[Y].

Recall that E[g(X, Y)] = Xx, 9(x,y)P[X =x,Y = y]. Hence,

E[XY]

Y xyP[X=x,Y =y]=Y xyP[X =x]P[Y =y], by ind.
Xy Xy
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Y xP[X = x]E[Y] = E[X]E[Y].
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Proof:
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That is, we assume that E(X)=0and E(Y) =0.
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