EECS 70: Lecture 27.	Recap	Joint distribution.
 Joint and Conditional Distributions. Recap of variance of a random variable Joint distributions Recap of indep. rand. variables: Variance of B(n,p) Conditioning of Random Variables (revisit G(p)) 	Variance • Variance: $var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2$ • Fact: $var[aX + b] = a^2 var[X]$ • Thm.: If X, Y are indep., $Var(X + Y) = Var(X) + Var(Y)$. • $U[1,, n] : Pr[X = m] = \frac{1}{n}, m = 1,, n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$ • $G(p) : Pr[X = n] = (1 - p)^{n-1}p, n = 1, 2,;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$ • $B(n, p) : Pr[X = m] = \binom{m}{n}p^m(1-p)^{n-m}, m = 0,, n;$	Two random variables, <i>X</i> and <i>Y</i> , in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: $P[X = x, Y = y]$. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events " $X = x, Y = y$ " disjoint? Yes! <i>Y</i> and <i>X</i> are functions on Ω . Do they cover the entire sample space? Yes! <i>X</i> and <i>Y</i> are functions on Ω . So, $\sum_{x,y} P[X = x, Y = y] = 1$. Joint Distribution: $P[X = x, Y = y]$. Marginal Distributions: $P[X = x]$ and $P[Y = y]$.
Two random variables, same outcome space.	E[X] = np; var(X) = = np(1-p). Joint distribution: Example. The joint distribution of X and Y is:	Important for inference.
X = number of episodes of Games of Thrones they have seen.Y = number of episodes of Westworld they have seen. \overline{X} 01223540411P0.30.050.050.050.10.4	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Definition: Independence The random variables X and Y are independent if and only if P[Y = b X = a] = P[Y = b], for all a and b. Fact:
Yes! All the probabilities are non-negative and add up to 1. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Is this a valid distribution? Yes! Notice that $P[X = a]$ and $P[Y = b]$ are (marginal) distributions! But now we have more information! For example, if I tell you someone watched 5 episodes of Westworld, they definitely didn't watch all the episodes of GoT.	X, Y are independent if and only if P[X = a, Y = b] = P[X = a]P[Y = b], for all a and b. Don't need a huge table of probabilities like the previous slide.

Independence: examples.

Example 1 Roll two dices. X, Y = number of pips on the two dice. X, Y are independent. Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6. **Example 2** Roll two dices. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent. Indeed: $P[X = 12, Y = 1] = 0 \neq P[X = 12]P[Y = 1] > 0.$ **Examples.** (1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1.$ Then

$$E[(X+2Y+3Z)^{2}]$$

$$= E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

$$= 1+4+9+4\times0+12\times0+6\times0$$

$$= 14.$$
(2) Let X, Y be independent and U{1,2,...,n}. Then

 $E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY] = 2E[X^{2}] - 2E[X]^{2}$

$$= \frac{1+3n+2n^2}{3} - \frac{(n+1)^2}{2}.$$

Mean of product of independent RVs.

Theorem Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y], \text{ by ind.}$$
$$= \sum_{x} \left[\sum_{y} xyP[X = x]P[Y = y] \right]$$
$$= \sum_{x} \left[xP[X = x] \left(\sum_{y} yP[Y = y] \right) \right]$$
$$= \sum_{x} xP[X = x]E[Y] = E[X]E[Y].$$

Variance: binomial.

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard! Ok.. fine. Let's do something else. Maybe not much easier...but there is a payoff. Variance of sum of two independent random variables Theorem: If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Proof: Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Hence,

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$
= $var(X) + var(Y).$

Variance of Binomial Distribution.

Flip coin with heads probability *p*. *X*- how many heads?

Xi

$$= \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$ $Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$ $p = 0 \implies Var(X_i) = 0$ $p = 1 \implies Var(X_i) = 0$ $X = X_1 + X_2 + \dots X_n.$ $X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$ $Var(X) = Var(X_1 + \dots X_n) = np(1 - p).$

Conditioning of RVs

Recall conditioning on an event A

$$P[X=k \mid A] = \frac{P[(X=k) \cap A]}{P[A]}$$

Conditioning on another RV

$$P[X = k \mid Y = m] = \frac{P[X = k, Y = m]}{P[Y = m]} = p_{X|Y}(x \mid y)$$

 $p_{X|Y}(x | y)$ is called the conditional distribution or conditional probability mass function (pmf) of X given Y

 $p_{X|Y}(x \mid y) = \frac{p_{XY}(x, y)}{p_Y(y)}$

Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

P[X = k + m | X > k] = P[X = m].

Thus
$$E[X \mid X > 1] = 1 + E[X]$$
.
We have $E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1]$.
 $\Rightarrow E[X] = p.1 + (1 - p)(E[X] + 1)$
 $\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$

 $\Rightarrow pE[X] = 1$ $\Rightarrow E[X] = \frac{1}{p}$

Derive the variance for $X \sim G(p)$ by finding $E[X^2]$ using conditioning.

Conditional distributions

$$X | Y \text{ is a RV:}$$

 $\sum_{x} p_{X|Y}(x | y) = \sum_{x} \frac{p_{XY}(x, y)}{p_{Y}(y)} = 1$

$$p_{XY}(x,y) = p_X(x)p_{Y|X}(y \mid x) = p_Y(y)p_{X|Y}(x \mid y)$$

Total Probability Theorem: If $A_1, A_2, ..., A_N$ partition Ω , and $P[A_i] > 0 \ \forall i$, then

$$p_X(x) = \sum_{i=1}^N P[A_i] P[X = x \mid A_i]$$

Nothing special about just two random variables, naturally extends to more.

Let's visit the mean and variance of the geometric distribution using conditional expectation.

Summary of Conditional distribution

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y). Denominator: Marginal distribution of Y. (Aside: surprising result using conditioning of RVs): **Theorem:** If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$. "Sum of independent Poissons is Poisson." Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m | X > n] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

Why? (Recall
$$E[g(X)] = \sum_{l} g(l) P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} k P[X = k \mid X > 1]$
 $= \sum_{k=2}^{\infty} k P[X = k-1]$ (memoryless)
 $= \sum_{l=1}^{\infty} (l+1) P[X = l]$ ($l = k-1$)
 $= E[X+1] = 1 + E[X]$

Summary.

Joint and Conditional Distributions.

Joint distributions:

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1.$
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x].$
- Independence: P[X = x, Y = y] = P[X = x]P[Y = y] for all x, y. E[XY] = E[X]E[Y].

Conditional distributions:

- Sum of independent Poissons is Poisson.
- Conditional expectation: useful for mean & variance calculations