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Joint distribution.

Two random variables, X and Y, in probability space: (£, P).
Whatis Y, P[X =x]? 1.  Whatis Y, P[Y =y]? 1.
Let’s think about: P[X =x,Y =y]|.
Whatis ¥, , P[X = x,Y = y]?
Are the events “X = x, Y = y” disjoint?
Yes! Y and X are functions on Q.
Do they cover the entire sample space?
Yes! X and Y are functions on Q.
S0, Yxy PIX=x,Y=y]=1.
Joint Distribution: P[X =x,Y =y].
Marginal Distributions: P[X = x] and P[Y = y].
Important for inference.
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The joint distribution of X and Y is:

Is this a valid distribution? Yes!

Y/X |0 1 2 3 5 40 All
0 0.15| 0 0 0 0 0.1 | 0.05
1 0 0.05 | 005 |O 0 0 0
0 0 0 0.05 005 |0 0
10 | 0.15 |0 0 0 0 0 0.35
=0.3 =0.05 =0.05 =0.05 =0.05 =0.1 =04

=0.3
=0.1
=0.1
=0.5

Notice that P[X = a] and P[Y = b] are (marginal) distributions!
But now we have more information!

For example, if | tell you someone watched 5 episodes of
Westworld, they definitely didn’t watch all the episodes of GoT.
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Definition: Independence

The random variables X and Y are independent if and only if

PlY =b| X=a]=P[Y =b], for all aand b.

Fact:

X, Y are independent if and only if
P[X=a,Y =b]=P[X=a]P[Y = b], forall aand b.

Don’t need a huge table of probabilities like the previous slide.



Independence: examples.

Example 1
Roll two dices. X, Y = number of pips on the two dice. X, Y are
independent.



Independence: examples.

Example 1
Roll two dices. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: P[X = a,Y = b] =1/36,P[X = a] = P[Y = b] = 1/6.



Independence: examples.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: P[X=a,Y =b]|=1/36,P[X=a]=P[Y =b]=1/6.
Example 2

Roll two dices. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are



Independence: examples.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: P[X=a,Y =b]|=1/36,P[X=a]=P[Y =b]=1/6.
Example 2

Roll two dices. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are not independent.



Independence: examples.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: P[X=a,Y =b]|=1/36,P[X=a]=P[Y =b]=1/6.
Example 2

Roll two dices. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are not independent.

Indeed: P[X =12,Y =1]=0+# P[X =12]P[Y =1] > 0.



Independence: examples.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are
independent.

Indeed: P[X=a,Y =b]|=1/36,P[X=a]=P[Y =b]=1/6.
Example 2

Roll two dices. X = total number of pips, Y = number of pips on
die 1 minus number on die 2. X and Y are not independent.

Indeed: P[X =12,Y =1]=0+# P[X =12]P[Y =1] > 0.



Mean of product of independent RVs.

Theorem
Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].



Mean of product of independent RVs.

Theorem
Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:
Recall that E[g(X, Y)] =Xx, 9(X,y)P[X=x,Y =y].



Mean of product of independent RVs.

Theorem
Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].
Proof:
Recall that E[g(X, Y)] = Xx, 9(x,y)P[X = x,Y = y]. Hence,

EIXY] = Y xyP[X=x,Y=y]
Xy



Mean of product of independent RVs.

Theorem
Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].
Proof:
Recall that E[g(X, Y)] = Xx, 9(x,y)P[X = x,Y = y]. Hence,

EIXY] = Y xyP[X=x,Y=y]=Y xyP[X=x]P[Y =y]
Xy Xy



Mean of product of independent RVs.
Theorem
Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:
Recall that E[g(X, Y)] = Xx, 9(x,y)P[X = x,Y = y]. Hence,

EIXY] = Y xyP[X=x,Y=y]=Y xyP[X =x]P[Y =y], byind.
Xy Xy

= z[;xyP[xﬂ]P[Y:y]]

X



Mean of product of independent RVs.

Theorem
Let X, Y be independent RVs. Then
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Mean of product of independent RVs.

Theorem
Let X, Y be independent RVs. Then

Proof:

E[XY] = E[X]E[Y].

Recall that E[g(X, Y)] = Xx, 9(x,y)P[X =x,Y = y]. Hence,

E[XY]

Y xyP[X=x,Y =y]=Y xyP[X =x]P[Y =y], by ind.
Xy Xy

z[gxyP[x = x]P[Y =V]]

X

Y [XPIX = x] (;yP[Y =4)]

Y xP[X = x]E[Y] = E[X]E[Y].
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Theorem:
If X and Y are independent, then

Var(X +Y) = Var(X)+ Var(Y).

Proof:
Since shifting the random variables does not change their variance,

let us subtract their means.
That is, we assume that E(X)=0and E(Y) =0.
Then, by independence,

E(XY) = E(X)E(Y)=0.

Hence,
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E(X?)+2E(XY)+E(Y?) = E(X?)+ E(Y?)



Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

Var(X +Y) = Var(X)+ Var(Y).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X)=0and E(Y) =0.
Then, by independence,

E(XY) = E(X)E(Y)=0.

Hence,
var(X+Y) = E(X+Y)?) =E(X?+2XY+Y?)
= E(X?)4+2E(XY)+E(Y?)=E(X?)+E(Y?)
= var(X)+var(Y).
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E[X] = E[Y] = E[Z] = 0 and E[X?] = E[Y?] = E[Z?] = 1.
Then
E[(X+2Y +32)?]
= E[X?+4Y? 19722 1+ 4XY +12YZ +6XZ]
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=14.
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Examples.

(1) Assume that X, Y, Z are (pairwise) independent, with
E[X] = E[Y] = E[Z] =0 and E[X?] = E[Y?] = E[Z?] =1.

Then

E[(X+2Y +32)?]
= E[X?+4Y? 19722 1+ 4XY +12YZ +6XZ]
=14+44+9+4x0+12x0+6x0
=14,

(2) Let X, Y be independent and U{1,2,...,n}. Then

E[(X-Y)?)] = E[X2+Y2-2XY]=2E[X?]-2E[X]?
1+3n+2m%  (n+1)°
3 2
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Variance: binomial.

n ) n . .
e = Y2 (7)p-pr
i=0
= Really???\1##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.
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Variance of Binomial Distribution.

Flip coin with heads probability p.
X- how many heads?

X — 1 if ith flip is heads
10 otherwise

E(X?)=12xp+0?x(1-p)=p.
Var(X;) = p—(E(X))? = p—p* = p(1 - p).
0 = Var(X;))=0
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Conditioning of RVs

Recall conditioning on an event A

P[(X=k)NnA
PIX=k|A = [(P[A])]
Conditioning on another RV

PIX=k|Y=m=" [XPTY"’_Ym:] ]

=px|y(x|y)

pxv(x | y) is called the conditional distribution or
conditional probability mass function (pmf) of X given Y

pxjy(x|y)= p)g;(();,)y)
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Conditional distributions
X|YisaRV:

Pxy(X,)

X =)y -—=~=1
ZenxIn-L2 0
Multiplication or Product Rule:

pxy(X,y) = px(X)Pyix(y | X) = py(¥)Px v (X | ¥)

Total Probability Theorem: If A, A, ..., Ay partition , and
P[A;] > 0 Vi, then

N
px(x) =Y PIA]P[X = x | A
=

i
Nothing special about just two random variables, naturally
extends to more.

Let’s visit the mean and variance of the geometric distribution
using conditional expectation.
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X is memoryless
P[X=n+m|X>n]=P[X =m].
Thus E[X | X > 1] =1+ E[X].

Why? (Recall E[g(X)] =Y,9()P[X =1])

EX|X>1=Y kP[X=k| X >1]
k=1

= Z kP[X =k—-1]  (memoryless)
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Revisiting mean of geometric RV X ~ G(p)

X is memoryless
PIX=k+m| X > k]=P[X=m].

Thus E[X | X > 1] =1+ E[X].
We have E[X] = P[X =1]E[X | X = 1]+ P[X > 1]E[X | X > 1].

= E[X]=p1+(1—-p)(E[X]+1)
= E[X]=p+1-p+ E[X]—-pE[X]
= pE[X] =1

:>E[X]:;

Derive the variance for X ~ G(p) by finding E[X?] using
conditioning.
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Joint distributions:
» Normalization: Y, , P[X =x,Y =y]=1.
» Marginalization: Y, P[X = x, Y = y] = P[X = x].
» Independence: P[X =x,Y = y] = P[X = x]P[Y = y] for all
x,y. E[XY] = E[X]E[Y].
Conditional distributions:
» Sum of independent Poissons is Poisson.

» Conditional expectation: useful for mean & variance
calculations



