Joint and Conditional Distributions.

1. Recap of variance of a random variable

- 1. Recap of variance of a random variable
- 2. Joint distributions

- 1. Recap of variance of a random variable
- 2. Joint distributions
- 3. Recap of indep. rand. variables: Variance of B(n,p)
- 4. Conditioning of Random Variables (revisit G(p))

- 1. Recap of variance of a random variable
- 2. Joint distributions
- 3. Recap of indep. rand. variables: Variance of B(n,p)
- 4. Conditioning of Random Variables (revisit G(p))

Variance

• Variance: $var[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2$

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- ► *U*[1,...,*n*]:

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$

- Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ E[X] =

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2};$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$

Variance

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- ► $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$

► G(p):

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$

•
$$G(p): Pr[X = n] =$$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$

•
$$G(p): Pr[X = n] = (1 - p)^{n-1}p, n = 1, 2, ...;$$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ E[X] =

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p};$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] =$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p) : Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$ • B(n,p) :

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$ • B(n, p): Pr[X = m] =

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$
- ► $B(n,p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0, ..., n;$

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$
- $B(n,p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0, ..., n;$ E[X] =

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ▶ Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$
- $B(n,p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0, ..., n;$ E[X] = np;

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$
- $B(n,p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0, ..., n;$ E[X] = np; var(X) =

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX+b] = a^2 var[X]$
- ► Thm.: If X, Y are indep., Var(X + Y) = Var(X) + Var(Y).
- $U[1,...,n]: Pr[X = m] = \frac{1}{n}, m = 1,...,n;$ $E[X] = \frac{n+1}{2}; var(X) = \frac{n^2-1}{12}.;$
- $G(p): Pr[X = n] = (1 p)^{n-1}p, n = 1, 2, ...;$ $E[X] = \frac{1}{p}; var[X] = \frac{1-p}{p^2}.$
- ► $B(n,p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0,...,n;$ E[X] = np; var(X) = = np(1-p).

Two random variables, X and Y, in probability space: (Ω, P) .

Two random variables, *X* and *Y*, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$?

Two random variables, *X* and *Y*, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1.

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$?

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1.

Two random variables, *X* and *Y*, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y].

Two random variables, *X* and *Y*, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$?

Two random variables, *X* and *Y*, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint?

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes!

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω .

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space?

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space? Yes!

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space? Yes! X and Y are functions on Ω .

Two random variables, *X* and *Y*, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! *Y* and *X* are functions on Ω . Do they cover the entire sample space? Yes! *X* and *Y* are functions on Ω .

So,

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space? Yes! X and Y are functions on Ω .

So, $\sum_{x,y} P[X = x, Y = y] = 1.$

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space? Yes! X and Y are functions on Ω .

So, $\sum_{x,y} P[X = x, Y = y] = 1.$

Joint Distribution: P[X = x, Y = y].

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space? Yes! X and Y are functions on Ω .

So, $\sum_{x,y} P[X = x, Y = y] = 1.$

Joint Distribution: P[X = x, Y = y]. Marginal Distributions: P[X = x] and P[Y = y].

Two random variables, X and Y, in probability space: (Ω, P) . What is $\sum_{x} P[X = x]$? 1. What is $\sum_{y} P[Y = y]$? 1. Let's think about: P[X = x, Y = y]. What is $\sum_{x,y} P[X = x, Y = y]$? Are the events "X = x, Y = y" disjoint? Yes! Y and X are functions on Ω . Do they cover the entire sample space? Yes! X and Y are functions on Ω .

So, $\sum_{x,y} P[X = x, Y = y] = 1.$

Joint Distribution: P[X = x, Y = y]. Marginal Distributions: P[X = x] and P[Y = y]. Important for inference.

Experiment: pick a random person.

Experiment: pick a random person. X = number of episodes of Games of Thrones they have seen.

Experiment: pick a random person.

- X = number of episodes of Games of Thrones they have seen.
- Y = number of episodes of Westworld they have seen.

Experiment: pick a random person.

X = number of episodes of Games of Thrones they have seen.

Y = number of episodes of Westworld they have seen.

		1					
Ρ	0.3	0.05	0.05	0.05	0.05	0.1	0.4

Experiment: pick a random person.

X = number of episodes of Games of Thrones they have seen.

Y = number of episodes of Westworld they have seen.

X	0	1	2	3	5	40	All
Ρ	0.3	0.05	0.05	0.05	0.05	0.1	0.4

Is this a distribution?

Experiment: pick a random person.

X = number of episodes of Games of Thrones they have seen.

Y = number of episodes of Westworld they have seen.

X	0	1	2	3	5	40	All
Ρ	0.3	0.05	0.05	0.05	0.05	0.1	0.4

Is this a distribution?

Yes! All the probabilities are non-negative and add up to 1.

Experiment: pick a random person.

X = number of episodes of Games of Thrones they have seen.

Y = number of episodes of Westworld they have seen.

X	0	1	2	3	5	40	All
Ρ	0.3	0.05	0.05	0.05	0.05	0.1	0.4

Is this a distribution?

Yes! All the probabilities are non-negative and add up to 1.

Y	0	1	5	10
Ρ	0.3	0.1	0.1	0.5

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All	
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All]
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

Is this a valid distribution?

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All]
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

Is this a valid distribution? Yes!

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All	
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

Is this a valid distribution? Yes! Notice that P[X = a] and P[Y = b] are (marginal) distributions!

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All	
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

Is this a valid distribution? Yes! Notice that P[X = a] and P[Y = b] are (marginal) distributions! But now we have more information!

The **joint distribution** of *X* and *Y* is:

Y/X	0	1	2	3	5	40	All	
0	0.15	0	0	0	0	0.1	0.05	=0.3
1	0	0.05	0.05	0	0	0	0	=0.1
5	0	0	0	0.05	0.05	0	0	=0.1
10	0.15	0	0	0	0	0	0.35	=0.5
	=0.3	=0.05	=0.05	=0.05	=0.05	=0.1	=0.4	

Is this a valid distribution? Yes!

Notice that P[X = a] and P[Y = b] are (marginal) distributions! But now we have more information!

For example, if I tell you someone watched 5 episodes of Westworld, they definitely didn't watch all the episodes of GoT.

Definition: Independence

Definition: Independence

The random variables X and Y are independent if and only if

P[Y = b | X = a] = P[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

P[Y = b | X = a] = P[Y = b], for all *a* and *b*.

Fact:

Definition: Independence

The random variables X and Y are independent if and only if

$$P[Y = b | X = a] = P[Y = b]$$
, for all a and b.

Fact:

X, Y are independent if and only if

P[X = a, Y = b] = P[X = a]P[Y = b], for all *a* and *b*.

Definition: Independence

The random variables X and Y are independent if and only if

$$P[Y = b | X = a] = P[Y = b]$$
, for all a and b.

Fact:

X, Y are independent if and only if

P[X = a, Y = b] = P[X = a]P[Y = b], for all *a* and *b*.

Don't need a huge table of probabilities like the previous slide.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6.

Example 2

Roll two dices. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6.

Example 2

Roll two dices. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6.

Example 2

Roll two dices. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $P[X = 12, Y = 1] = 0 \neq P[X = 12]P[Y = 1] > 0$.

Example 1

Roll two dices. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: P[X = a, Y = b] = 1/36, P[X = a] = P[Y = b] = 1/6.

Example 2

Roll two dices. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $P[X = 12, Y = 1] = 0 \neq P[X = 12]P[Y = 1] > 0$.

Mean of product of independent RVs.

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Mean of product of independent RVs.

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y].$

Mean of product of independent RVs.

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof: Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y], \text{ by ind.}$$
$$= \sum_{x} \left[\sum_{y} xyP[X = x]P[Y = y] \right]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y], \text{ by ind.}$$
$$= \sum_{x} \left[\sum_{y} xyP[X = x]P[Y = y] \right]$$
$$= \sum_{x} \left[xP[X = x] \left(\sum_{y} yP[Y = y] \right) \right]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xyP[X = x]P[Y = y] \right]$$

$$= \sum_{x} \left[xP[X = x] \left(\sum_{y} yP[Y = y] \right) \right]$$

$$= \sum_{x} xP[X = x]E[Y]$$

Theorem

Let X, Y be independent RVs. Then

E[XY] = E[X]E[Y].

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x,y)P[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyP[X = x, Y = y] = \sum_{x,y} xyP[X = x]P[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left[\sum_{y} xyP[X = x]P[Y = y] \right]$$

$$= \sum_{x} \left[xP[X = x] \left(\sum_{y} yP[Y = y] \right) \right]$$

$$= \sum_{x} xP[X = x]E[Y] = E[X]E[Y].$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2)$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2+2XY+Y^2)$$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X+Y) = E((X+Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$

Theorem:

If X and Y are independent, then

$$Var(X+Y) = Var(X) + Var(Y).$$

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that E(X) = 0 and E(Y) = 0.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$var(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$

= $E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$
= $var(X) + var(Y)$.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}] = E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}]$$

= $E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$
= $1+4+9+4\times0+12\times0+6\times0$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}]$$

= $E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$
= $1+4+9+4\times0+12\times0+6\times0$
= 14.

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}]$$

= $E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$
= $1+4+9+4\times0+12\times0+6\times0$
= 14.

(2) Let X, Y be independent and U{1,2,...,n}. Then

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}]$$

= $E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$
= $1+4+9+4\times0+12\times0+6\times0$
= 14.

(2) Let X, Y be independent and U{1,2,...,n}. Then

$$E[(X - Y)^2] = E[X^2 + Y^2 - 2XY] = 2E[X^2] - 2E[X]^2$$

(1) Assume that X, Y, Z are (pairwise) independent, with E[X] = E[Y] = E[Z] = 0 and $E[X^2] = E[Y^2] = E[Z^2] = 1$. Then

$$E[(X+2Y+3Z)^{2}]$$

= $E[X^{2}+4Y^{2}+9Z^{2}+4XY+12YZ+6XZ]$
= $1+4+9+4\times0+12\times0+6\times0$
= 14.

(2) Let X, Y be independent and U{1,2,...,n}. Then

$$E[(X - Y)^{2}] = E[X^{2} + Y^{2} - 2XY] = 2E[X^{2}] - 2E[X]^{2}$$
$$= \frac{1 + 3n + 2n^{2}}{3} - \frac{(n+1)^{2}}{2}.$$

$$E[X^2] = \sum_{i=0}^n i^2 {n \choose i} p^i (1-p)^{n-i}.$$

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok..

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard! Ok.. fine.

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else.

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...

$$E[X^{2}] = \sum_{i=0}^{n} i^{2} {n \choose i} p^{i} (1-p)^{n-i}.$$

= Really???!!##...

Too hard!

Ok.. fine. Let's do something else. Maybe not much easier...but there is a payoff.

Flip coin with heads probability *p*.

Flip coin with heads probability *p*. *X*- how many heads?

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$$

 $E(X_i^2)$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \left\{ egin{array}{cc} 1 & ext{if } i ext{th flip is heads} \ 0 & ext{otherwise} \end{array}
ight.$$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1-p)$

Flip coin with heads probability *p*. *X*- how many heads?

 $X_i = \begin{cases} 1 & ext{if } ith flip is heads \\ 0 & ext{otherwise} \end{cases}$

 $E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

Var $(X_i) = p - (E(X))^2$

Flip coin with heads probability *p*. *X*- how many heads?

$$X_i = \left\{egin{array}{cc} 1 & ext{ if } i ext{th flip is heads} \ 0 & ext{ otherwise} \end{array}
ight.$$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

Var $(X_i) = p - (E(X))^2 = p - p^2$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

Var $(X_i) = p - (E(X))^2 = p - p^2 = p(1-p).$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).
p = 0

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1-p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1-p).$$

$$p = 0 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

Flip coin with heads probability *p*. *X*- how many heads?

 $X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

 X_i and X_j are independent:

Flip coin with heads probability *p*. *X*- how many heads?

 $X_i = \begin{cases} 1 & \text{if } i \text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + p.$$

 X_i and X_j are independent: $Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1]$.

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n)$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Flip coin with heads probability *p*. *X*- how many heads?

$$E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.$$

$$Var(X_i) = p - (E(X))^2 = p - p^2 = p(1 - p).$$

$$p = 0 \implies Var(X_i) = 0$$

$$p = 1 \implies Var(X_i) = 0$$

$$X = X_1 + X_2 + \dots + X_n.$$

$$X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1 | X_j = 1] = Pr[X_i = 1].$$

$$Var(X) = Var(X_1 + \cdots + X_n) = np(1-p).$$

Recall conditioning on an event A

$$P[X=k \mid A] = \frac{P[(X=k) \cap A]}{P[A]}$$

Recall conditioning on an event A

$$P[X=k \mid A] = \frac{P[(X=k) \cap A]}{P[A]}$$

Conditioning on another RV

$$P[X = k \mid Y = m]$$

Recall conditioning on an event A

$$P[X=k \mid A] = \frac{P[(X=k) \cap A]}{P[A]}$$

Conditioning on another RV

$$P[X = k | Y = m] = \frac{P[X = k, Y = m]}{P[Y = m]}$$

Recall conditioning on an event A

$$P[X=k \mid A] = \frac{P[(X=k) \cap A]}{P[A]}$$

Conditioning on another RV

$$P[X = k \mid Y = m] = \frac{P[X = k, Y = m]}{P[Y = m]} = p_{X|Y}(x \mid y)$$

Recall conditioning on an event A

$$P[X=k \mid A] = \frac{P[(X=k) \cap A]}{P[A]}$$

Conditioning on another RV

$$P[X = k \mid Y = m] = \frac{P[X = k, Y = m]}{P[Y = m]} = p_{X|Y}(x \mid y)$$

 $p_{X|Y}(x \mid y)$ is called the conditional distribution or conditional probability mass function (pmf) of X given Y

$$p_{X|Y}(x \mid y) = \frac{p_{XY}(x, y)}{p_Y(y)}$$

 $X \mid Y$ is a RV:

$$\sum_{x} p_{X|Y}(x \mid y) = \sum_{x} \frac{p_{XY}(x, y)}{p_{Y}(y)} = 1$$

 $X \mid Y$ is a RV:

$$\sum_{x} p_{X|Y}(x \mid y) = \sum_{x} \frac{p_{XY}(x, y)}{p_Y(y)} = 1$$

Multiplication or Product Rule:

$$p_{XY}(x,y) = p_X(x)p_{Y|X}(y \mid x) = p_Y(y)p_{X|Y}(x \mid y)$$

 $X \mid Y$ is a RV:

$$\sum_{x} p_{X|Y}(x \mid y) = \sum_{x} \frac{p_{XY}(x, y)}{p_Y(y)} = 1$$

Multiplication or Product Rule:

$$p_{XY}(x,y) = p_X(x)p_{Y|X}(y \mid x) = p_Y(y)p_{X|Y}(x \mid y)$$

Total Probability Theorem: If $A_1, A_2, ..., A_N$ partition Ω , and $P[A_i] > 0 \quad \forall i$, then

$$p_X(x) = \sum_{i=1}^N P[A_i] P[X = x \mid A_i]$$

 $X \mid Y$ is a RV:

$$\sum_{x} \rho_{X|Y}(x \mid y) = \sum_{x} \frac{\rho_{XY}(x, y)}{\rho_{Y}(y)} = 1$$

Multiplication or Product Rule:

$$p_{XY}(x,y) = p_X(x)p_{Y|X}(y \mid x) = p_Y(y)p_{X|Y}(x \mid y)$$

Total Probability Theorem: If $A_1, A_2, ..., A_N$ partition Ω , and $P[A_i] > 0 \quad \forall i$, then

$$p_X(x) = \sum_{i=1}^N P[A_i] P[X = x \mid A_i]$$

Nothing special about just two random variables, naturally extends to more.

 $X \mid Y$ is a RV:

$$\sum_{x} p_{X|Y}(x \mid y) = \sum_{x} \frac{p_{XY}(x, y)}{p_Y(y)} = 1$$

Multiplication or Product Rule:

$$p_{XY}(x,y) = p_X(x)p_{Y|X}(y \mid x) = p_Y(y)p_{X|Y}(x \mid y)$$

Total Probability Theorem: If $A_1, A_2, ..., A_N$ partition Ω , and $P[A_i] > 0 \quad \forall i$, then

$$p_X(x) = \sum_{i=1}^N P[A_i] P[X = x \mid A_i]$$

Nothing special about just two random variables, naturally extends to more.

Let's visit the mean and variance of the geometric distribution using conditional expectation.

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

Why?

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

Why?

X is memoryless

$$P[X = n + m | X > n] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

Why? (Recall $E[g(X)] = \sum_{l} g(l) P[X = l]$)

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Why? (Recall
$$E[g(X)] = \sum_{l} g(l) P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} k P[X = k \mid X > 1]$

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Why? (Recall
$$E[g(X)] = \sum_{l} g(l)P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$
 $= \sum_{k=2}^{\infty} kP[X = k-1]$ (memoryless)

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Why? (Recall
$$E[g(X)] = \sum_{l} g(l)P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$
 $= \sum_{k=2}^{\infty} kP[X = k-1]$ (memoryless)
 $= \sum_{l=1}^{\infty} (l+1)P[X = l]$ ($l = k - 1$)

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Why? (Recall
$$E[g(X)] = \sum_{l} g(l)P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$
 $= \sum_{k=2}^{\infty} kP[X = k-1]$ (memoryless)
 $= \sum_{l=1}^{\infty} (l+1)P[X = l]$ ($l = k - 1$)
 $= E[X + 1]$

X is **memoryless**

$$P[X = n + m | X > n] = P[X = m].$$

Why? (Recall
$$E[g(X)] = \sum_{l} g(l)P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$
 $= \sum_{k=2}^{\infty} kP[X = k-1]$ (memoryless)
 $= \sum_{l=1}^{\infty} (l+1)P[X = l]$ ($l = k-1$)
 $= E[X+1] = 1 + E[X]$

X is **memoryless**

$$P[X = k + m | X > k] = P[X = m].$$

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

•

Thus E[X | X > 1] = 1 + E[X].

We have E[X] = P[X = 1]E[X | X = 1] +

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

We have E[X] = P[X = 1]E[X | X = 1] + P[X > 1]E[X | X > 1].

 $\Rightarrow E[X] = p.1 + (1-p)(E[X]+1)$

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

$$\Rightarrow E[X] = p.1 + (1-p)(E[X]+1)$$
$$\Rightarrow E[X] = p+1-p+E[X]-pE[X]$$

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

$$\Rightarrow E[X] = p.1 + (1 - p)(E[X] + 1)$$

$$\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$$

$$\Rightarrow pE[X] = 1$$

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

$$\Rightarrow E[X] = p.1 + (1 - p)(E[X] + 1)$$

$$\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$$

$$\Rightarrow pE[X] = 1$$

$$\Rightarrow E[X] = \frac{1}{p}$$

X is memoryless

$$P[X = k + m | X > k] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

We have E[X] = P[X = 1]E[X | X = 1] + P[X > 1]E[X | X > 1].

$$\Rightarrow E[X] = p.1 + (1 - p)(E[X] + 1)$$

$$\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$$

$$\Rightarrow pE[X] = 1$$

$$\Rightarrow E[X] = \frac{1}{p}$$

Derive the variance for $X \sim G(p)$ by finding $E[X^2]$ using conditioning.

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Denominator: Marginal distribution of Y.

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

"Sum of independent Poissons is Poisson."

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x | Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

"Sum of independent Poissons is Poisson."

Joint and Conditional Distributions.

Joint and Conditional Distributions.

Joint and Conditional Distributions.

Joint distributions:

• Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.

Joint and Conditional Distributions.

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x].$

Joint and Conditional Distributions.

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x].$
- ► Independence: P[X = x, Y = y] = P[X = x]P[Y = y] for all x, y.

Joint and Conditional Distributions.

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x]$.
- ► Independence: P[X = x, Y = y] = P[X = x]P[Y = y] for all x, y. E[XY] = E[X]E[Y].

Joint and Conditional Distributions.

Joint distributions:

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x].$
- ► Independence: P[X = x, Y = y] = P[X = x]P[Y = y] for all x, y. E[XY] = E[X]E[Y].

Conditional distributions:

Joint and Conditional Distributions.

Joint distributions:

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x].$
- ► Independence: P[X = x, Y = y] = P[X = x]P[Y = y] for all x, y. E[XY] = E[X]E[Y].

Conditional distributions:

Sum of independent Poissons is Poisson.

Joint and Conditional Distributions.

Joint distributions:

- Normalization: $\sum_{x,y} P[X = x, Y = y] = 1$.
- Marginalization: $\sum_{y} P[X = x, Y = y] = P[X = x].$
- ► Independence: P[X = x, Y = y] = P[X = x]P[Y = y] for all x, y. E[XY] = E[X]E[Y].

Conditional distributions:

- Sum of independent Poissons is Poisson.
- Conditional expectation: useful for mean & variance calculations