

Recap: Conditional distributions X | Y is a RV: $\sum_{x} p_{X|Y}(x | y) = \sum_{x} \frac{p_{XY}(x, y)}{p_{Y}(y)} = 1$ **Multiplication or Product Rule:** $p_{XY}(x, y) = p_X(x)p_{Y|X}(y | x) = p_Y(y)p_{X|Y}(x | y)$ **Total Probability Theorem:** If $A_1, A_2, ..., A_N$ partition Ω , and $P[A_i] > 0 \ \forall i$, then $p_X(x) = \sum_{i=1}^N P[A_i]P[X = x | A_i]$ Nothing special about just two random variables, naturally extends to more.

Let's visit the mean and variance of the geometric distribution using conditional expectation.

Summary of Conditional distribution

For Random Variables X and Y, P[X = x | Y = k] is the **conditional distribution** of X given Y = k

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y). Denominator: Marginal distribution of Y. (Aside: surprising result using conditioning of RVs): **Theorem**: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$. "Sum of independent Poissons is Poisson." Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m | X > n] = P[X = m].$$

Thus E[X | X > 1] = 1 + E[X].

Why? (Recall
$$E[g(X)] = \sum_{l} g(l)P[X = l]$$
)
 $E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$
 $= \sum_{k=2}^{\infty} kP[X = k-1]$ (memoryless)
 $= \sum_{l=1}^{\infty} (l+1)P[X = l]$ ($l = k - 1$)
 $= E[X + 1] = 1 + E[X]$

Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, *n* is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{p}$, *n* is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

 X_1 : T T T T H T T T \cdots H \cdots H appears with probability p_1

 X_2 : T T H T T T T T \cdots H \cdots H appears with probability p_2

 $Y: T T H T H T T T \cdots 2H \cdots$ H appears with probability $p_1 + p_2$, 2H appears with $p_1 p_2$

Intuition: If $p_1 = \frac{\lambda_1}{n}$ and $p_2 = \frac{\lambda_2}{n}$, then $p_1 p_2 = \frac{\lambda_1 \lambda_2}{n^2}$ $\Rightarrow 2H$ will essentially NEVER appear!

Sum of Independent Poissons is Poisson
Let's define events:
A: Every Y_i has H or T for i = 1,2,...,n
D: At least one Y_i is 2H for i = 1,2,...,n

• D: At least one Y_i is 2*H* for $i = 1, 2, \dots$,

We have A and D partition Ω , so

P[Y = k] = P[Y = k | A]P[A] + P[Y = k | D]P[D]

$$P[D] \leq \frac{\lambda_1 \lambda_2}{n}$$

 $P[D] \rightarrow 0 \text{ as } n \text{ grows}$ $P[A] = 1 - P[D] \rightarrow 1 \text{ as } n \text{ grows}$ $P[Y = k \mid A] \underset{D}{=} B(n, p_1 + p_2)$ $P[Y = k] \sim B(n, p_1 + p_2)$ Limit: "Poisson(λ_1) + Poisson(λ_2) = Poisson($\lambda_1 + \lambda_2$)"

Uniformly at Random in [0, 1].

Let [a, b] denote the **event** that the point X is in the interval [a, b].

 $Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{1} = b-a.$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are **events.** More generally, events in this space are unions of intervals. Example: the event *A* - "within 0.2 of 0 or 1" is $A = [0, 0.2] \cup [0.8, 1]$. Thus,

Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.

More generally, if A_n are pairwise disjoint intervals in [0,1], then

 $Pr[\cup_n A_n] := \sum_n Pr[A_n].$

Many subsets of [0,1] are of this form. Thus, the probability of those sets is well defined. We call such sets events.

Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali's Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving.

What is the probability they meet?

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a finite number of bits. This introduces an error perceived as noise: the quantization noise. What is the power of that noise?

Uniformly at Random in [0, 1].

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, ..., N\}$, we started with $Pr[\omega] = p_{\omega}$. We then defined $Pr[A] = \sum_{\omega \in A} p_{\omega}$ for $A \subset \Omega$. We used the same approach for countable Ω .

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with Pr[A] for some events *A*. Here, we started with *A* = interval, or union of intervals.

	$f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$ $F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$
$\lambda = 1$	$F_{X}(x)$
Summary	
	Continuous Probability
1. pdf: <i>Pr[</i> ≯	Continuous Probability $f \in (x, x + \delta]] = f_X(x)\delta.$
2. CDF: Pr	$X \in (x, x + \delta]] = f_X(x)\delta.$
 CDF: Pr U[a,b]: f Expo(λ) 	$X \in (x, x + \delta]] = f_X(x)\delta.$ $X \le x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy.$ $X_X(x) = \frac{1}{b-a} \mathbb{1}\{a \le x \le b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \le x \le b.$