
CS70: Lecture 28.

Continuous Probability

1. Conditional Probability (Recap: revisit G(p))

2. Continuous Probability: Examples
3. Continuous Probability: Events
4. Continuous Random Variables

Recap: Conditional distributions
X | Y is a RV:

∑
x

pX |Y (x | y) = ∑
x

pXY (x ,y)

pY (y)
= 1

Multiplication or Product Rule:

pXY (x ,y) = pX (x)pY |X (y | x) = pY (y)pX |Y (x | y)

Total Probability Theorem: If A1, A2, . . . , AN partition Ω, and
P[Ai ] > 0 ∀i , then

pX (x) =
N

∑
i=1

P[Ai ]P[X = x | Ai ]

Nothing special about just two random variables, naturally
extends to more.

Let’s visit the mean and variance of the geometric distribution
using conditional expectation.

Revisiting mean of geometric RV X ∼G(p)

X is memoryless

P[X = n + m | X > n] = P[X = m].

Thus E [X | X > 1] = 1 + E [X ].

Why? (Recall E [g(X )] = ∑l g(l)P[X = l])

E [X | X > 1] =
∞

∑
k=1

kP[X = k | X > 1]

=
∞

∑
k=2

kP[X = k−1] (memoryless)

=
∞

∑
l=1

(l + 1)P[X = l] (l = k −1)

= E [X + 1] = 1 + E [X ]

Revisiting mean of geometric RV X ∼G(p)

X is memoryless

P[X = k + m | X > k ] = P[X = m].

Thus E [X | X > 1] = 1 + E [X ].

We have E [X ] = P[X = 1]E [X | X = 1] + P[X > 1]E [X | X > 1].

⇒ E [X ]= p.1 + (1−p)(E [X ] + 1)

⇒ E [X ] = p + 1−p + E [X ]−pE [X ]

⇒ pE [X ] = 1

⇒ E [X ] =
1
p

Derive the variance for X ∼G(p) by finding E [X 2] using
conditioning.

Summary of Conditional distribution

For Random Variables X and Y , P[X = x | Y = k ] is the
conditional distribution of X given Y = k

P[X = x | Y = k ] =
P[X = x ,Y = k ]

P[Y = k ]

Numerator: Joint distribution of (X ,Y ).

Denominator: Marginal distribution of Y .

(Aside: surprising result using conditioning of RVs):

Theorem: If X ∼ Poisson(λ1), Y ∼ Poisson(λ2) are independent,
then X + Y ∼ Poisson(λ1 + λ2).

“Sum of independent Poissons is Poisson.”

Sum of Independent Poissons is Poisson
Intuition based on Binomial limiting behavior

I X1 ∼ B(n,p1) where p1 = λ1
n , n is large, λ1 is constant

I X2 ∼ B(n,p2) where p2 = λ2
n , n is large, λ2 is constant

Question: What is (a good approximation to) Y = X1 + X2?
(X1,X2 independent)

X1 : T T T T H T T T · · · H · · ·
H appears with probability p1

X2 : T T H T T T T T · · · H · · ·
H appears with probability p2

Y : T T H T H T T T · · · 2H · · ·
H appears with probability p1 + p2, 2H appears with p1p2

Intuition: If p1 = λ1
n and p2 = λ2

n , then p1p2 = λ1λ2
n2

⇒ 2H will essentially NEVER appear!



Sum of Independent Poissons is Poisson

Let’s define events:
I A: Every Yi has H or T for i = 1,2, · · · ,n
I D: At least one Yi has 2H for i = 1,2, · · · ,n

We have A and D partition Ω, so

P[Y = k ] = P[Y = k | A]P[A] + P[Y = k | D]P[D]

P[D] = P[∪n
i=1(Yi is 2H)]

≤
n

∑
i=1

P[Yi is 2H]

≤
n

∑
i=1

λ1λ2

n2 =
λ1λ2

n

Sum of Independent Poissons is Poisson
Let’s define events:

I A: Every Yi has H or T for i = 1,2, · · · ,n
I D: At least one Yi is 2H for i = 1,2, · · · ,n

We have A and D partition Ω, so

P[Y = k ] = P[Y = k | A]P[A] + P[Y = k | D]P[D]

P[D]≤ λ1λ2

n

P[D]→ 0 as n grows

P[A] = 1−P[D]→ 1 as n grows

P[Y = k | A] =
D

B(n,p1 + p2)

P[Y = k ]∼ B(n,p1 + p2)
Limit: “Poisson(λ1) + Poisson(λ2) = Poisson(λ1 + λ2)”

Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance,
velocity, temperature, etc. that are continuous-valued.
Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As
they have uncertain schedules, they are independently and uniformly
likely to show up randomly at any time in the designated hour. They
decide that whoever shows up first will wait for at most 10 minutes
before leaving.
What is the probability they meet?

You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a
finite number of bits. This introduces an error perceived as noise: the
quantization noise. What is the power of that noise?

Continuous Probability: Uniformly at Random in [0,1].

Choose a real number X , uniformly at random in [0,1].

What is the probability that X is exactly equal to 1/3? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any x ∈ [0,1], one has Pr [X = x ] = 0.

How should we then describe ‘choosing uniformly at random in [0,1]’?

Here is the way to do it:

Pr [X ∈ [a,b]] = b−a,∀0≤ a≤ b ≤ 1.

Makes sense: b−a is the fraction of [0,1] that [a,b] covers.

Uniformly at Random in [0,1].

Let [a,b] denote the event that the point X is in the interval [a,b].

Pr [[a,b]] =
length of [a,b]

length of [0,1]
=

b−a
1

= b−a.

Intervals like [a,b]⊆ Ω = [0,1] are events.
More generally, events in this space are unions of intervals.
Example: the event A - “within 0.2 of 0 or 1” is A = [0,0.2]∪ [0.8,1].
Thus,

Pr [A] = Pr [[0,0.2]] + Pr [[0.8,1]] = 0.4.

More generally, if An are pairwise disjoint intervals in [0,1], then

Pr [∪nAn] := ∑
n

Pr [An].

Many subsets of [0,1] are of this form. Thus, the probability of those
sets is well defined. We call such sets events.

Uniformly at Random in [0,1].

Note: A radical change in approach. For a finite probability space,
Ω = {1,2, . . . ,N}, we started with Pr [ω] = pω . We then defined
Pr [A] = ∑ω∈A pω for A⊂ Ω. We used the same approach for
countable Ω.

For a continuous space, e.g., Ω = [0,1], we cannot start with Pr [ω],
because this will typically be 0. Instead, we start with Pr [A] for some
events A. Here, we started with A = interval, or union of intervals.



Uniformly at Random in [0,1].

Note: Pr [X ≤ x ] = x for x ∈ [0,1]. Also, Pr [X ≤ x ] = 0 for x < 0 and
Pr [X ≤ x ] = 1 for x > 1. Let us define F (x) = Pr [X ≤ x ].

Then we have Pr [X ∈ (a,b]] = Pr [X ≤ b]−Pr [X ≤ a] = F (b)−F (a).

Thus, F (·) specifies the probability of all the events!

Uniformly at Random in [0,1].

Pr [X ∈ (a,b]] = Pr [X ≤ b]−Pr [X ≤ a] = F (b)−F (a).

An alternative view is to define f (x) = d
dx F (x) = 1{x ∈ [0,1]}. Then

F (b)−F (a) =
∫ b

a
f (x)dx .

Thus, the probability of an event is the integral of f (x) over the event:

Pr [X ∈ A] =
∫

A
f (x)dx .

Uniformly at Random in [0,1].

Think of f (x) as describing how
one unit of probability is spread over [0,1]: uniformly!

Then Pr [X ∈ A] is the probability mass over A.

Observe:

I This makes the probability automatically additive.

I We need f (x)≥ 0 and
∫ ∞
−∞ f (x)dx = 1.

Uniformly at Random in [0,1].

Discrete Approximation: Fix N� 1 and let ε = 1/N.

Define Y = nε if (n−1)ε < X ≤ nε for n = 1, . . . ,N.

Then |X −Y | ≤ ε and Y is discrete: Y ∈ {ε,2ε, . . . ,Nε}.
Also, Pr [Y = nε] = 1

N for n = 1, . . . ,N.

Thus, X is ‘almost discrete.’

Nonuniformly at Random in [0,1].

This figure shows a different choice of f (x)≥ 0 with
∫ ∞
−∞ f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1 than to 0.

One has Pr [X ≤ x ] =
∫ x
−∞ f (u)du = x2 for x ∈ [0,1].

Also, Pr [X ∈ (x ,x + ε)] =
∫ x+ε

x f (u)du ≈ f (x)ε.

Another Nonuniform Choice at Random in [0,1].

This figure shows yet a different choice of f (x)≥ 0 with∫ ∞
−∞ f (x)dx = 1.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, Pr [X ∈ [0,1/3]] =
∫ 1/3

0 4xdx = 2
[
x2]1/3

0 = 2
9 .

Thus, Pr [X ∈ [0,1/3]] = Pr [X ∈ [2/3,1]] = 2
9 and

Pr [X ∈ [1/3,2/3]] = 5
9 .



General Random Choice in ℜ
Let F (x) be a nondecreasing function with F (−∞) = 0 and F (+∞) = 1.

Define X by Pr [X ∈ (a,b]] = F (b)−F (a) for a < b. Also, for
a1 < b1 < a2 < b2 < · · ·< bn,

Pr [X ∈ (a1,b1]∪ (a2,b2]∪ (an,bn]]

= Pr [X ∈ (a1,b1]] + · · ·+ Pr [X ∈ (an,bn]]

= F (b1)−F (a1) + · · ·+ F (bn)−F (an).

Let f (x) = d
dx F (x). Then,

Pr [X ∈ (x ,x + ε]] = F (x + ε)−F (x)≈ f (x)ε.

Here, F (x) is called the cumulative distribution function (cdf) of X and
f (x) is the probability density function (pdf) of X .

To indicate that F and f correspond to the RV X , we will write them
FX (x) and fX (x).

Pr [X ∈ (x ,x + ε)]

An illustration of Pr [X ∈ (x ,x + ε)]≈ fX (x)ε:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’

Discrete Approximation

Fix ε � 1 and let Y = nε if X ∈ (nε,(n + 1)ε].

Thus, Pr [Y = nε] = FX ((n + 1)ε)−FX (nε).

Note that |X −Y | ≤ ε and Y is a discrete random variable.

Also, if fX (x) = d
dx FX (x), then FX (x + ε)−FX (x)≈ fX (x)ε.

Hence, Pr [Y = nε]≈ fX (nε)ε.

Thus, we can think of X of being almost discrete with
Pr [X = nε]≈ fX (nε)ε.

Example: CDF
Example: hitting random location on gas tank.
Random location on circle.

y

1

Random Variable: Y distance from center.
Probability within y of center:

Pr [Y ≤ y ] =
area of small circle
area of dartboard

=
πy2

π
= y2.

Hence,

FY (y) = Pr [Y ≤ y ] =





0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

Calculation of event with dartboard..

Probability between .5 and .6 of center?
Recall CDF.

FY (y) = Pr [Y ≤ y ] =





0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

Pr [0.5 < Y ≤ 0.6] = Pr [Y ≤ 0.6]−Pr [Y ≤ 0.5]

= FY (0.6)−FY (0.5)

= .36− .25
= .11

PDF.

Example: “Dart” board.
Recall that

FY (y) = Pr [Y ≤ y ] =





0 for y < 0
y2 for 0≤ y ≤ 1
1 for y > 1

fY (y) = F ′Y (y) =





0 for y < 0
2y for 0≤ y ≤ 1
0 for y > 1

The cumulative distribution function (cdf) and probability
distribution function (pdf) give full information.
Use whichever is convenient.



Target U[a,b] Expo(λ )
The exponential distribution with parameter λ > 0 is defined by

fX (x) = λe−λx1{x ≥ 0}

FX (x) =

{
0, if x < 0
1−e−λx , if x ≥ 0.

Note that Pr [X > t ] = e−λ t for t > 0.

Random Variables

Continuous random variable X , specified by

1. FX (x) = Pr [X ≤ x ] for all x .
Cumulative Distribution Function (cdf).
Pr [a < X ≤ b] = FX (b)−FX (a)

1.1 0≤ FX (x)≤ 1 for all x ∈ℜ.
1.2 FX (x)≤ FX (y) if x ≤ y .

2. Or fX (x) , where FX (x) =
∫ x
−∞ fX (u)du or fX (x) = d(FX (x))

dx .
Probability Density Function (pdf).
Pr [a < X ≤ b] =

∫ b
a fX (x)dx = FX (b)−FX (a)

2.1 fX (x)≥ 0 for all x ∈ℜ.
2.2

∫ ∞
−∞ fX (x)dx = 1.

Recall that Pr [X ∈ (x ,x + δ )]≈ fX (x)δ . Think of X taking
discrete values nδ for n = . . . ,−2,−1,0,1,2, . . . with
Pr [X = nδ ] = fX (nδ )δ .

A Picture

The pdf fX (x) is a nonnegative function that integrates to 1.

The cdf FX (x) is the integral of fX .

Pr [x < X < x + δ ]≈ fX (x)δ

Pr [X ≤ x ] = Fx (x) =
∫ x

−∞
fX (u)du

Summary

Continuous Probability

1. pdf: Pr [X ∈ (x ,x + δ ]] = fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞ fX (y)dy .

3. U[a,b]: fX (x) = 1
b−a 1{a≤ x ≤ b};FX (x) = x−a

b−a for a≤ x ≤ b.

4. Expo(λ ):
fX (x) = λ exp{−λx}1{x ≥ 0};FX (x) = 1− exp{−λx} for x ≤ 0.

5. Target: fX (x) = 2x1{0≤ x ≤ 1};FX (x) = x2 for 0≤ x ≤ 1.


