Continuous Probability
Continuous Probability
Continuous Probability

1. Conditional Probability (Recap: revisit $G(p)$)
2. Continuous Probability: Examples
3. Continuous Probability: Events
4. Continuous Random Variables
Recap: Conditional distributions

$X \mid Y$ is a RV:

$$\sum_x p_{X \mid Y}(x \mid y) = \sum_x \frac{p_{XY}(x, y)}{p_Y(y)} = 1$$
Recap: Conditional distributions

\(X \mid Y \) is a RV:

\[
\sum_x p_{X \mid Y}(x \mid y) = \sum_x \frac{p_{XY}(x, y)}{p_Y(y)} = 1
\]

Multiplication or Product Rule:

\[
p_{XY}(x, y) = p_X(x)p_{Y \mid X}(y \mid x) = p_Y(y)p_{X \mid Y}(x \mid y)
\]

Nothing special about just two random variables, naturally extends to more.

Let's visit the mean and variance of the geometric distribution using conditional expectation.
Recap: Conditional distributions

\(X \mid Y \) is a RV:

\[
\sum_x p_{X \mid Y}(x \mid y) = \sum_x \frac{p_{XY}(x, y)}{p_Y(y)} = 1
\]

Multiplication or Product Rule:

\[
p_{XY}(x, y) = p_X(x)p_{Y \mid X}(y \mid x) = p_Y(y)p_{X \mid Y}(x \mid y)
\]

Total Probability Theorem: If \(A_1, A_2, \ldots, A_N \) partition \(\Omega \), and \(P[A_i] > 0 \ \forall \ i \), then

\[
p_X(x) = \sum_{i=1}^{N} P[A_i]P[X = x \mid A_i]
\]
Recap: Conditional distributions

$X \mid Y$ is a RV:

$$\sum_x p_{X \mid Y}(x \mid y) = \sum_x \frac{p_{XY}(x, y)}{p_Y(y)} = 1$$

Multiplication or Product Rule:

$$p_{XY}(x, y) = p_X(x)p_{Y \mid X}(y \mid x) = p_Y(y)p_{X \mid Y}(x \mid y)$$

Total Probability Theorem: If A_1, A_2, \ldots, A_N partition Ω, and $P[A_i] > 0 \ \forall i$, then

$$p_X(x) = \sum_{i=1}^{N} P[A_i]P[X = x \mid A_i]$$

Nothing special about just two random variables, naturally extends to more.
Recap: Conditional distributions

\(X \mid Y \) is a RV:

\[
\sum_x p_{X \mid Y}(x \mid y) = \sum_x \frac{p_{XY}(x, y)}{p_Y(y)} = 1
\]

Multiplication or Product Rule:

\[
p_{XY}(x, y) = p_X(x)p_{Y \mid X}(y \mid x) = p_Y(y)p_{X \mid Y}(x \mid y)
\]

Total Probability Theorem: If \(A_1, A_2, \ldots, A_N \) partition \(\Omega \), and \(P[A_i] > 0 \ \forall i \), then

\[
p_X(x) = \sum_{i=1}^N P[A_i]P[X = x \mid A_i]
\]

Nothing special about just two random variables, naturally extends to more.

Let’s visit the mean and variance of the geometric distribution using conditional expectation.
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why?
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why?
Revisiting mean of geometric RV \(X \sim G(p) \)

\(X \) is memoryless

\[
P[X = n + m \mid X > n] = P[X = m].
\]

Thus \(E[X \mid X > 1] = 1 + E[X] \).

Why? (Recall \(E[g(X)] = \sum_l g(l)P[X = l] \))
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why? (Recall $E[g(X)] = \sum_l g(l)P[X = l]$)

$$E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$$
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why? (Recall $E[g(X)] = \sum_l g(l)P[X = l]$)

$$E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$$

$$= \sum_{k=2}^{\infty} kP[X = k-1] \quad (memoryless)$$
Revisiting mean of geometric RV $X \sim G(p)$

X is **memoryless**

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why? (Recall $E[g(X)] = \sum_l g(l)P[X = l]$)

$$E[X \mid X > 1] = \sum_{k=1}^{\infty} k P[X = k \mid X > 1]$$

$$= \sum_{k=2}^{\infty} k P[X = k - 1] \quad (memoryless)$$

$$= \sum_{l=1}^{\infty} (l + 1) P[X = l] \quad (l = k - 1)$$
Revisiting mean of geometric RV $X \sim G(p)$

X is **memoryless**

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why? (Recall $E[g(X)] = \sum_l g(l)P[X = l]$)

$$E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$$

$$= \sum_{k=2}^{\infty} kP[X = k-1] \quad (memoryless)$$

$$= \sum_{l=1}^{\infty} (l + 1)P[X = l] \quad (l = k - 1)$$

$$= E[X + 1]$$
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = n + m \mid X > n] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

Why? (Recall $E[g(X)] = \sum_l g(l)P[X = l]$)

$$E[X \mid X > 1] = \sum_{k=1}^{\infty} kP[X = k \mid X > 1]$$

$$= \sum_{k=2}^{\infty} kP[X = k - 1] \quad (memoryless)$$

$$= \sum_{l=1}^{\infty} (l + 1)P[X = l] \quad (l = k - 1)$$

$$= E[X + 1] = 1 + E[X]$$
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X].$
Revisiting mean of geometric RV $X \sim G(p)$

X is **memoryless**

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

We have $E[X] = P[X = 1]E[X \mid X = 1] + \ldots$.
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

We have $E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1]$.
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

We have $E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1]$.

$$\Rightarrow E[X] = p \cdot 1 + (1 - p)(E[X] + 1)$$
Revisiting mean of geometric RV \(X \sim G(p) \)

\(X \) is memoryless

\[P[X = k + m \mid X > k] = P[X = m]. \]

Thus \(E[X \mid X > 1] = 1 + E[X] \).

We have \(E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1] \).

\[\Rightarrow E[X] = p \cdot 1 + (1 - p)(E[X] + 1) \]

\[\Rightarrow E[X] = p + 1 - p + E[X] - pE[X] \]
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

We have $E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1]$.

$$\Rightarrow E[X] = p \cdot 1 + (1 - p)(E[X] + 1)$$

$$\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$$

$$\Rightarrow pE[X] = 1$$
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

We have $E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1]$.

$$\Rightarrow E[X] = p \cdot 1 + (1 - p)(E[X] + 1)$$

$$\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$$

$$\Rightarrow pE[X] = 1$$

$$\Rightarrow E[X] = \frac{1}{p}$$
Revisiting mean of geometric RV $X \sim G(p)$

X is memoryless

$$P[X = k + m \mid X > k] = P[X = m].$$

Thus $E[X \mid X > 1] = 1 + E[X]$.

We have $E[X] = P[X = 1]E[X \mid X = 1] + P[X > 1]E[X \mid X > 1]$.

$$\Rightarrow E[X] = p \cdot 1 + (1 - p)(E[X] + 1)$$
$$\Rightarrow E[X] = p + 1 - p + E[X] - pE[X]$$
$$\Rightarrow pE[X] = 1$$
$$\Rightarrow E[X] = \frac{1}{p}$$

Derive the variance for $X \sim G(p)$ by finding $E[X^2]$ using conditioning.
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the conditional distribution of X given $Y = k$.
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the **conditional distribution** of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the **conditional distribution** of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Aside: surprising result using conditioning of RVs:

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

"Sum of independent Poissons is Poisson."
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the conditional distribution of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).

Denominator: Marginal distribution of Y. (Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

"Sum of independent Poissons is Poisson."
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the **conditional distribution** of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).
Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

"Sum of independent Poissons is Poisson."
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the conditional distribution of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).
Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the **conditional distribution** of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).
Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

“Sum of independent Poissons is Poisson.”
Summary of Conditional distribution

For Random Variables X and Y, $P[X = x \mid Y = k]$ is the conditional distribution of X given $Y = k$

$$P[X = x \mid Y = k] = \frac{P[X = x, Y = k]}{P[Y = k]}$$

Numerator: Joint distribution of (X, Y).
Denominator: Marginal distribution of Y.

(Aside: surprising result using conditioning of RVs):

Theorem: If $X \sim \text{Poisson}(\lambda_1)$, $Y \sim \text{Poisson}(\lambda_2)$ are independent, then $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

“Sum of independent Poissons is Poisson.”
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant

Question: What is $(a good approximation to)$ $Y = X_1 + X_2$?

(X_1, X_2 independent)

X_1: $\quad \text{T T T T H T T T H}$

X_2: $\quad \text{T T H T T T T T H}$

Y: $\quad \text{T T H T H T T T}$

Intuition: If $p_1 = \frac{\lambda_1}{n}$ and $p_2 = \frac{\lambda_2}{n}$, then $p_1 p_2 = \frac{\lambda_1 \lambda_2}{n^2}$.

$\Rightarrow 2H$ will essentially NEVER appear!
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

► $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
► $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

1. $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
2. $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

X_1: T T T T H T T T T ... H ...
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- \(X_1 \sim B(n, p_1) \) where \(p_1 = \frac{\lambda_1}{n} \), \(n \) is large, \(\lambda_1 \) is constant
- \(X_2 \sim B(n, p_2) \) where \(p_2 = \frac{\lambda_2}{n} \), \(n \) is large, \(\lambda_2 \) is constant

Question: What is (a good approximation to) \(Y = X_1 + X_2 \)? (\(X_1, X_2 \) independent)

\[
X_1 : \quad T \quad T \quad T \quad T \quad H \quad T \quad T \quad T \quad T \quad \cdots \quad H \quad \cdots
\]

\(H \) appears with probability \(p_1 \)
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

$X_1: \quad T \quad T \quad T \quad T \quad H \quad T \quad T \quad T \quad T \quad \cdots \quad H \quad \cdots$

H appears with probability p_1

$X_2: \quad T \quad T \quad H \quad T \quad T \quad T \quad T \quad T \quad T \quad \cdots \quad H \quad \cdots$
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

$X_1: \ T \ T \ T \ T \ H \ T \ T \ T \ \cdots \ H \ \cdots$

H appears with probability p_1

$X_2: \ T \ T \ H \ T \ T \ T \ T \ T \ T \ \cdots \ H \ \cdots$

H appears with probability p_2
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

$X_1: \quad T \quad T \quad T \quad T \quad H \quad T \quad T \quad T \quad T \quad \cdots \quad H \quad \cdots$

H appears with probability p_1

$X_2: \quad T \quad T \quad H \quad T \quad T \quad T \quad T \quad T \quad T \quad \cdots \quad H \quad \cdots$

H appears with probability p_2

$Y: \quad T \quad T \quad H \quad T \quad H \quad T \quad T \quad T \quad \cdots \quad 2H \quad \cdots$
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

$X_1: \ T \ T \ T \ T \ T \ H \ T \ T \ T \ T \ \cdots \ H \ \cdots$

H appears with probability p_1

$X_2: \ T \ T \ H \ T \ T \ T \ T \ T \ \cdots \ H \ \cdots$

H appears with probability p_2

$Y: \ T \ T \ H \ T \ H \ T \ T \ T \ T \ \cdots \ 2H \ \cdots$

H appears with probability $p_1 + p_2$, $2H$ appears with $p_1 p_2$
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

$X_1 : \ T \ T \ T \ T \ T \ H \ T \ T \ T \ T \ \ldots \ H \ \ldots$

H appears with probability p_1

$X_2 : \ T \ T \ H \ T \ T \ T \ T \ T \ T \ \ldots \ H \ \ldots$

H appears with probability p_2

$Y : \ T \ T \ H \ T \ H \ T \ T \ T \ T \ \ldots \ 2H \ \ldots$

H appears with probability $p_1 + p_2$, $2H$ appears with $p_1 p_2$

Intuition: If $p_1 = \frac{\lambda_1}{n}$ and $p_2 = \frac{\lambda_2}{n}$, then $p_1 p_2 = \frac{\lambda_1 \lambda_2}{n^2}$
Sum of Independent Poissons is Poisson

Intuition based on Binomial limiting behavior

- $X_1 \sim B(n, p_1)$ where $p_1 = \frac{\lambda_1}{n}$, n is large, λ_1 is constant
- $X_2 \sim B(n, p_2)$ where $p_2 = \frac{\lambda_2}{n}$, n is large, λ_2 is constant

Question: What is (a good approximation to) $Y = X_1 + X_2$? (X_1, X_2 independent)

- $X_1: T \ T \ T \ T \ H \ T \ T \ T \ T \ T \ \cdots \ H \ \cdots$
 - H appears with probability p_1

- $X_2: T \ T \ H \ T \ T \ T \ T \ T \ T \ T \ \cdots \ H \ \cdots$
 - H appears with probability p_2

- $Y: T \ T \ H \ T \ H \ T \ T \ T \ T \ T \ \cdots \ 2H \ \cdots$
 - H appears with probability $p_1 + p_2$, $2H$ appears with $p_1 p_2$

Intuition: If $p_1 = \frac{\lambda_1}{n}$ and $p_2 = \frac{\lambda_2}{n}$, then $p_1 p_2 = \frac{\lambda_1 \lambda_2}{n^2}$

$\Rightarrow 2H$ will essentially NEVER appear!
Sum of Independent Poissons is Poisson

Let’s define events:

- A: Every Y_i has H or T for $i = 1, 2, \ldots, n$
- D: At least one Y_i has $2H$ for $i = 1, 2, \ldots, n$
Sum of Independent Poissons is Poisson

Let’s define events:

- A: Every Y_i has H or T for $i = 1, 2, \cdots, n$
- D: At least one Y_i has 2H for $i = 1, 2, \cdots, n$

We have A and D partition Ω, so

$$P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]$$
Sum of Independent Poissons is Poisson

Let’s define events:

- **A**: Every Y_i has H or T for $i = 1, 2, \ldots, n$
- **D**: At least one Y_i has 2H for $i = 1, 2, \ldots, n$

We have A and D partition Ω, so

$$P[D] = P[\bigcup_{i=1}^{n} (Y_i \text{ is 2H})]$$
Sum of Independent Poissons is Poisson

Let’s define events:

- **A**: Every Y_i has H or T for $i = 1, 2, \ldots, n$
- **D**: At least one Y_i has 2H for $i = 1, 2, \ldots, n$

We have A and D partition Ω, so

$$P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]$$

$$P[D] = P[\bigcup_{i=1}^{n}(Y_i \text{ is 2H})]$$

$$\leq \sum_{i=1}^{n} P[Y_i \text{ is 2H}]$$
Sum of Independent Poissons is Poisson

Let’s define events:
- A: Every Y_i has H or T for $i = 1, 2, \cdots, n$
- D: At least one Y_i has 2H for $i = 1, 2, \cdots, n$

We have A and D partition Ω, so

$$P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]$$

$$P[D] = P[\bigcup_{i=1}^{n}(Y_i \text{ is } 2H)]$$
$$\leq \sum_{i=1}^{n} P[Y_i \text{ is } 2H]$$
$$\leq \sum_{i=1}^{n} \frac{\lambda_1 \lambda_2}{n^2}$$
Sum of Independent Poissons is Poisson

Let’s define events:

- A: Every Y_i has H or T for $i = 1, 2, \cdots, n$
- D: At least one Y_i has 2H for $i = 1, 2, \cdots, n$

We have A and D partition Ω, so

$$P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]$$

$$P[D] = P[\bigcup_{i=1}^{n} (Y_i \text{ is } 2H)]$$

$$\leq \sum_{i=1}^{n} P[Y_i \text{ is } 2H]$$

$$\leq \sum_{i=1}^{n} \frac{\lambda_1 \lambda_2}{n^2} = \frac{\lambda_1 \lambda_2}{n}$$
Sum of Independent Poissons is Poisson

Let's define events:

- A: Every Y_i has H or T for $i = 1, 2, \ldots, n$
- D: At least one Y_i is 2H for $i = 1, 2, \ldots, n$

We have A and D partition Ω, so

$$P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]$$

$$P[D] \leq \frac{\lambda_1 \lambda_2}{n}$$
Sum of Independent Poissons is Poisson

Let’s define events:

- **A**: Every \(Y_i \) has H or T for \(i = 1, 2, \ldots, n \)
- **D**: At least one \(Y_i \) is 2H for \(i = 1, 2, \ldots, n \)

We have \(A \) and \(D \) partition \(\Omega \), so

\[
P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]
\]

\[
P[D] \leq \frac{\lambda_1 \lambda_2}{n}
\]

\(P[D] \to 0 \) as \(n \) grows
Sum of Independent Poissons is Poisson

Let’s define events:

- A: Every \(Y_i \) has H or T for \(i = 1, 2, \ldots, n \)
- D: At least one \(Y_i \) is 2H for \(i = 1, 2, \ldots, n \)

We have \(A \) and \(D \) partition \(\Omega \), so

\[
P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]
\]

\[
P[D] \leq \frac{\lambda_1 \lambda_2}{n}
\]

\(P[D] \to 0 \) as \(n \) grows

\(P[A] = 1 - P[D] \to 1 \) as \(n \) grows
Sum of Independent Poissons is Poisson

Let’s define events:

- **A**: Every Y_i has H or T for $i = 1, 2, \cdots, n$
- **D**: At least one Y_i is 2H for $i = 1, 2, \cdots, n$

We have A and D partition Ω, so

$$P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]$$

$$P[D] \leq \frac{\lambda_1 \lambda_2}{n}$$

$P[D] \to 0$ as n grows

$P[A] = 1 - P[D] \to 1$ as n grows

$P[Y = k \mid A] \sim B(n, p_1 + p_2)$
Sum of Independent Poissons is Poisson

Let's define events:

- **A**: Every \(Y_i \) has H or T for \(i = 1, 2, \cdots, n \)
- **D**: At least one \(Y_i \) is 2H for \(i = 1, 2, \cdots, n \)

We have \(A \) and \(D \) partition \(\Omega \), so

\[
P[Y = k] = P[Y = k \mid A]P[A] + P[Y = k \mid D]P[D]
\]

\[
P[D] \leq \frac{\lambda_1 \lambda_2}{n}
\]

\(P[D] \to 0 \) as \(n \) grows

\(P[A] = 1 - P[D] \to 1 \) as \(n \) grows

\[
P[Y = k \mid A] = B(n, p_1 + p_2)
\]

\[
P[Y = k] \sim B(n, p_1 + p_2)
\]

Limit: "\(\text{Poisson}(\lambda_1) + \text{Poisson}(\lambda_2) = \text{Poisson}(\lambda_1 + \lambda_2) \)"
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are *continuous-valued*.

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a finite number of bits.

This introduces an error perceived as noise: the *quantization noise*.

What is the power of that noise?
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are \textit{continuous-valued}. Need to extend our discrete-probability knowledge-base to cover this.
Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving.
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are continuous-valued. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving.

What is the probability they meet?
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving. What is the probability they meet?

You break a stick at two points chosen independently uniformly at random.
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are continuous-valued. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving.

What is the probability they meet?

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving. What is the probability they meet?

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a finite number of bits.
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving.

What is the probability they meet?

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a finite number of bits. This introduces an error perceived as noise: the quantization noise.
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are continuous-valued. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving.

What is the probability they meet?

You break a stick at two points chosen independently uniformly at random.

What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a finite number of bits. This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Continuous Probability: Why do we need it?

Many settings involve uncertainty in quantities like time, distance, velocity, temperature, etc. that are **continuous-valued**. Need to extend our discrete-probability knowledge-base to cover this.

Here are some motivating examples:

Alice and Bob decide to meet at Yali’s Cafe to study for CS 70. As they have uncertain schedules, they are independently and uniformly likely to show up randomly at any time in the designated hour. They decide that whoever shows up first will wait for at most 10 minutes before leaving. What is the probability they meet?

You break a stick at two points chosen independently uniformly at random. What is the probability you can make a triangle with the three pieces?

In digital video and audio, one represents a continuous value by a finite number of bits. This introduces an error perceived as noise: the quantization noise. What is the power of that noise?
Continuous Probability: Uniformly at Random in \([0, 1]\).

Choose a real number \(X\), uniformly at random in \([0, 1]\). What is the probability that \(X\) is exactly equal to \(\frac{1}{3}\)? Well, \(0\). What is the probability that \(X\) is exactly equal to \(0.6\)? Again, \(0\). In fact, for any \(x\in [0, 1]\), one has \(\Pr[X = x] = 0\).

How should we then describe ‘choosing uniformly at random in \([0, 1]\)’? Here is the way to do it: \(\Pr[X \in [a, b]] = b - a, \forall 0 \leq a \leq b \leq 1\). Makes sense: \(b - a\) is the fraction of \([0, 1]\) that \([a, b]\) covers.
Continuous Probability: Uniformly at Random in $[0, 1]$.

Choose a real number X, uniformly at random in

What is the probability that X is exactly equal to $\frac{1}{3}$?

Well, ..., 0.

What is the probability that X is exactly equal to 0.6?

Again, 0.

In fact, for any $x \in [0, 1]$, one has $\Pr[X = x] = 0$.

How should we then describe 'choosing uniformly at random in $[0, 1]$'?

Here is the way to do it:

$$\Pr[X \in [a, b]] = b - a, \ \forall \ 0 \leq a \leq b \leq 1.$$

Makes sense: $b - a$ is the fraction of $[0, 1]$ that $[a, b]$ covers.
Continuous Probability: Uniformly at Random in \([0, 1]\).

Choose a real number \(X\), uniformly at random in \([0, 1]\).
Choose a real number X, uniformly at random in $[0, 1]$. What is the probability that X is exactly equal to $1/3$?
Choose a real number X, uniformly at random in $[0, 1]$.

What is the probability that X is exactly equal to $1/3$? Well, ...,
Continuous Probability: Uniformly at Random in $[0, 1]$.

Choose a real number X, uniformly at random in $[0, 1]$.

What is the probability that X is exactly equal to $1/3$? Well, ..., 0.
Choose a real number X, uniformly at random in $[0, 1]$.
What is the probability that X is exactly equal to $1/3$? Well, ..., 0.
Choose a real number X, uniformly at random in $[0, 1]$.

What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6?
Continuous Probability: Uniformly at Random in $[0, 1]$.

Choose a real number X, uniformly at random in $[0, 1]$.

What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.
Continuous Probability: Uniformly at Random in $[0, 1]$.

Choose a real number X, uniformly at random in $[0, 1]$. What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0, 1]$, one has $Pr[X = x] =$
Choose a real number X, uniformly at random in $[0, 1]$. What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0. In fact, for any $x \in [0, 1]$, one has $Pr[X = x] = 0$.

How should we then describe 'choosing uniformly at random in $[0, 1]$'?

Here is the way to do it:

$$Pr[X \in [a, b]] = b - a, \quad \forall 0 \leq a \leq b \leq 1.$$

Makes sense: $b - a$ is the fraction of $[0, 1]$ that $[a, b]$ covers.
Choose a real number X, uniformly at random in $[0,1]$. What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0,1]$, one has $Pr[X = x] = 0$.

How should we then describe ‘choosing uniformly at random in $[0,1]$’?
Continuous Probability: Uniformly at Random in $[0, 1]$.

Choose a real number X, uniformly at random in $[0, 1]$.

What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0, 1]$, one has $Pr[X = x] = 0$.

How should we then describe ‘choosing uniformly at random in $[0, 1]$’?

Here is the way to do it:
Continuous Probability: Uniformly at Random in [0, 1].

Choose a real number X, uniformly at random in [0, 1].
What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.
In fact, for any $x \in [0, 1]$, one has $Pr[X = x] = 0$.
How should we then describe ‘choosing uniformly at random in [0, 1]’?
Here is the way to do it:

$$Pr[X \in [a, b]] = b - a, \forall 0 \leq a \leq b \leq 1.$$
Choose a real number X, uniformly at random in $[0,1]$.

What is the probability that X is exactly equal to $1/3$? Well, ..., 0.

What is the probability that X is exactly equal to 0.6? Again, 0.

In fact, for any $x \in [0,1]$, one has $Pr[X = x] = 0$.

How should we then describe ‘choosing uniformly at random in $[0,1]$’?

Here is the way to do it:

$$Pr[X \in [a,b]] = b - a, \forall 0 \leq a \leq b \leq 1.$$

Makes sense: $b - a$ is the fraction of $[0,1]$ that $[a,b]$ covers.
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$
\text{Pr}([a, b]) = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b-a}{1}.
$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events. More generally, events in this space are unions of intervals.

Example: the event A - "within 0.2 of 0 or 1" is

$$
A = [0, 0.2] \cup [0.8, 1].
$$

Thus,

$$
\text{Pr}(A) = \text{Pr}([0, 0.2]) + \text{Pr}([0.8, 1]) = 0.4.
$$

More generally, if A_n are pairwise disjoint intervals in $[0, 1]$, then

$$
\text{Pr}(\bigcup A_n) := \sum \text{Pr}(A_n).
$$

Many subsets of $[0, 1]$ are of this form. Thus, the probability of those sets is well defined. We call such sets events.
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the **event** that the point X is in the interval $[a, b]$.

$$
\text{Pr} \left[[a, b] \right] = \frac{b - a}{1 - 0} = b - a.
$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events.

More generally, events in this space are unions of intervals.

Example: the event A - "within 0.2 of 0 or 1" is

$$
A = [0, 0.2] \cup [0.8, 1].
$$

Thus,

$$
\text{Pr}[A] = \text{Pr}[0, 0.2] + \text{Pr}[0.8, 1] = 0.2 + 0.2 = 0.4.
$$

More generally, if A_n are pairwise disjoint intervals in $[0, 1]$, then

$$
\text{Pr}\left[\bigcup_{n} A_{n} \right] := \sum_{n} \text{Pr}[A_{n}].
$$

Many subsets of $[0, 1]$ are of this form.

Thus, the probability of those sets is well defined.

We call such sets events.
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] =$$
Uniformly at Random in \([0,1]\).

Let \([a, b]\) denote the **event** that the point \(X\) is in the interval \([a, b]\).

\[
Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} =
\]
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the **event** that the point X is in the interval $[a, b]$.

\[
Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b - a}{1} = b - a.
\]
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events.
Uniformly at Random in $[0,1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b - a}{1} = b - a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events. More generally, events in this space are unions of intervals.
Uniformly at Random in \([0, 1]\).

Let \([a, b]\) denote the **event** that the point \(X\) is in the interval \([a, b]\).

\[
Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b - a}{1} = b - a.
\]

Intervals like \([a, b] \subseteq \Omega = [0, 1]\) are **events**. More generally, events in this space are **unions of intervals**. Example: the event \(A\) - “within 0.2 of 0 or 1” is \(A = [0, 0.2] \cup [0.8, 1]\).
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b - a}{1} = b - a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events. More generally, events in this space are unions of intervals. Example: the event A - “within 0.2 of 0 or 1” is $A = [0, 0.2] \cup [0.8, 1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] =$$
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the **event** that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b - a}{1} = b - a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are **events**.
More generally, events in this space are **unions of intervals**.
Example: the event A - “within 0.2 of 0 or 1” is $A = [0, 0.2] \cup [0.8, 1]$.
Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b - a}{1} = b - a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events.
More generally, events in this space are unions of intervals.
Example: the event A - “within 0.2 of 0 or 1” is $A = [0, 0.2] \cup [0.8, 1]$.
Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in $[0, 1]$, then
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events. More generally, events in this space are unions of intervals. Example: the event A - “within 0.2 of 0 or 1” is $A = [0, 0.2] \cup [0.8, 1]$. Thus,

$$Pr[A] = Pr[[0, 0.2]] + Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in $[0, 1]$, then

$$Pr[\bigcup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of $[0, 1]$ are of this form.
Uniformly at Random in $[0,1]$. Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0,1]$ are events. More generally, events in this space are unions of intervals. Example: the event A - “within 0.2 of 0 or 1” is $A = [0, 0.2] \cup [0.8, 1]$. Thus,

$$Pr[A] = Pr[[0,0.2]] + Pr[[0.8,1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in $[0,1]$, then

$$Pr[\bigcup_n A_n] := \sum_n Pr[A_n].$$

Many subsets of $[0,1]$ are of this form. Thus, the probability of those sets is well defined.
Uniformly at Random in $[0, 1]$.

Let $[a, b]$ denote the event that the point X is in the interval $[a, b]$.

$$\Pr[[a, b]] = \frac{\text{length of } [a, b]}{\text{length of } [0, 1]} = \frac{b-a}{1} = b-a.$$

Intervals like $[a, b] \subseteq \Omega = [0, 1]$ are events.

More generally, events in this space are unions of intervals. Example: the event A - “within 0.2 of 0 or 1” is $A = [0, 0.2] \cup [0.8, 1]$.

Thus,

$$\Pr[A] = \Pr[[0, 0.2]] + \Pr[[0.8, 1]] = 0.4.$$

More generally, if A_n are pairwise disjoint intervals in $[0, 1]$, then

$$\Pr[\bigcup_n A_n] := \sum_n \Pr[A_n].$$

Many subsets of $[0, 1]$ are of this form. Thus, the probability of those sets is well defined. We call such sets events.
Uniformly at Random in $[0, 1]$.

Note: A radical change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $\Pr[\omega] = p_\omega$. We then defined $\Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$.

We used the same approach for countable Ω. For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $\Pr[\omega]$, because this will typically be 0. Instead, we start with $\Pr[A]$ for some events A. Here, we started with $A = \text{interval, or union of intervals.}$
Uniformly at Random in $[0,1]$.

Note: A **radical** change in approach.
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space,
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$,
Uniformly at Random in $[0, 1]$.

Note: A \textbf{radical} change in approach. For a finite probability space, \(\Omega = \{1, 2, \ldots, N\} \), we started with \(Pr[\omega] = p_\omega \).
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$.
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

![Diagram](image.png)
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space,
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0, 1]$, ...
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$,
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0.
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $\Pr[\omega] = p_\omega$. We then defined $\Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $\Pr[\omega]$, because this will typically be 0. Instead, we start with $\Pr[A]$ for some events A.
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with $Pr[A]$ for some events A. Here, we started with $A = \text{interval}$,
Uniformly at Random in $[0,1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1,2,\ldots,N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0,1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with $Pr[A]$ for some events A. Here, we started with $A = \text{interval}$, or union of intervals.
Uniformly at Random in $[0, 1]$.

Note: A **radical** change in approach. For a finite probability space, $\Omega = \{1, 2, \ldots, N\}$, we started with $Pr[\omega] = p_\omega$. We then defined $Pr[A] = \sum_{\omega \in A} p_\omega$ for $A \subset \Omega$. We used the same approach for countable Ω.

For a continuous space, e.g., $\Omega = [0, 1]$, we cannot start with $Pr[\omega]$, because this will typically be 0. Instead, we start with $Pr[A]$ for some events A. Here, we started with $A = \text{interval, or union of intervals.}$
Uniformly at Random in $[0, 1]$.

Note: $\Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $\Pr[X \leq x] = 0$ for $x < 0$ and $\Pr[X \leq x] = 1$ for $x > 1$.

Let us define $F(x) = \Pr[X \leq x]$. Then we have \\[\Pr[X \in (a, b)] = \Pr[X \leq b] - \Pr[X \leq a] = F(b) - F(a). \]

Thus, $F(\cdot)$ specifies the probability of all the events!
Uniformly at Random in [0, 1].

Note:
Uniformly at Random in $[0, 1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0, 1]$.
Uniformly at Random in $[0, 1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $Pr[X \leq x] = 0$ for $x < 0$
Uniformly at Random in $[0, 1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $Pr[X \leq x] = 0$ for $x < 0$ and $Pr[X \leq x] = 1$ for $x > 1$.
Uniformly at Random in $[0, 1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $Pr[X \leq x] = 0$ for $x < 0$ and $Pr[X \leq x] = 1$ for $x > 1$. Let us define $F(x) = Pr[X \leq x]$.

![Probability Distribution](image-url)
Uniformly at Random in $[0, 1]$.

Note: $\Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $\Pr[X \leq x] = 0$ for $x < 0$ and $\Pr[X \leq x] = 1$ for $x > 1$. Let us define $F(x) = \Pr[X \leq x]$.

![Graph showing the cumulative distribution function](image)
Uniformly at Random in $[0, 1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $Pr[X \leq x] = 0$ for $x < 0$ and $Pr[X \leq x] = 1$ for $x > 1$. Let us define $F(x) = Pr[X \leq x]$.

Then we have $Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a]$
Uniformly at Random in $[0, 1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0, 1]$. Also, $Pr[X \leq x] = 0$ for $x < 0$ and $Pr[X \leq x] = 1$ for $x > 1$. Let us define $F(x) = Pr[X \leq x]$.

Then we have $Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a)$.
Uniformly at Random in $[0,1]$.

Note: $Pr[X \leq x] = x$ for $x \in [0,1]$. Also, $Pr[X \leq x] = 0$ for $x < 0$ and $Pr[X \leq x] = 1$ for $x > 1$. Let us define $F(x) = Pr[X \leq x]$.

Then we have $Pr[X \in (a,b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a)$. Thus, $F(\cdot)$ specifies the probability of all the events!
Uniformly at Random in \([0, 1]\).

\[
Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a]
\]
Uniformly at Random in $[0, 1]$.

\[Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a). \]
Uniformly at Random in \([0,1]\).

\[Pr[X \in (a,b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a). \]

An alternative view is to define \(f(x) = \frac{d}{dx} F(x) = \)
Uniformly at Random in \([0, 1]\).

\[
Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a).
\]

An alternative view is to define \(f(x) = \frac{d}{dx} F(x) = 1 \{ x \in [0, 1] \}\).
Uniformly at Random in $[0, 1]$.

$$Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx} F(x) = 1 \{x \in [0, 1]\}$. Then

$$F(b) - F(a) = \int_a^b f(x) \, dx.$$
Uniformly at Random in $[0, 1]$.

$$Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx} F(x) = 1 \{ x \in [0, 1] \}$. Then

$$F(b) - F(a) = \int_a^b f(x) \, dx.$$

Thus, the probability of an event is the integral of $f(x)$ over the event:
Uniformly at Random in $[0, 1]$.

\[
Pr[X \in (a, b)] = Pr[X \leq b] - Pr[X \leq a] = F(b) - F(a).
\]

An alternative view is to define \(f(x) = \frac{d}{dx} F(x) = 1 \{ x \in [0, 1] \} \). Then

\[
F(b) - F(a) = \int_a^b f(x) \, dx.
\]

Thus, the probability of an event is the integral of \(f(x) \) over the event:

\[
Pr[X \in A] = \int_A f(x) \, dx.
\]
Uniformly at Random in $[0, 1]$.

Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$:

- This makes the probability automatically additive.
- We need $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x) \, dx = 1$.

Pr[$X \in A$] = $\int_A f(x) \, dx$
Uniformly at Random in $[0, 1]$.

Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$:

$$Pr[X \in A] = \int_A f(x) \, dx$$
Uniformly at Random in [0, 1].

Think of $f(x)$ as describing how one unit of probability is spread over [0, 1]: uniformly!

$$Pr[X \in A] = \int_A f(x)dx$$
Uniformly at Random in $[0, 1]$.

Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.
Uniformly at Random in $[0, 1]$.

Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:
Uniformly at Random in $[0, 1]$.

Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

- This makes the probability automatically additive.
Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

- This makes the probability automatically additive.
- We need $f(x) \geq 0$
Uniformly at Random in $[0, 1]$.

Think of $f(x)$ as describing how one unit of probability is spread over $[0, 1]$: uniformly!

Then $Pr[X \in A]$ is the probability mass over A.

Observe:

- This makes the probability automatically additive.
- We need $f(x) \geq 0$ and $\int_{-\infty}^{\infty} f(x)dx = 1$.
Uniformly at Random in $[0, 1]$.
Uniformly at Random in $[0, 1]$.

Discrete Approximation:

Fix $N \gg 1$ and let $\epsilon = \frac{1}{N}$.

Define $Y = n\epsilon$ if $(n-1)\epsilon < X \leq n\epsilon$ for $n = 1, \ldots, N$.

Then $|X - Y| \leq \epsilon$ and Y is discrete: $Y \in \{\epsilon, 2\epsilon, \ldots, N\epsilon\}$.

Also, $\Pr[Y = n\epsilon] = \frac{1}{N}$ for $n = 1, \ldots, N$.

Thus, X is 'almost discrete.'
Uniformly at Random in $[0, 1]$.

Discrete Approximation:

x $Y = \left\lfloor \frac{X}{\epsilon} \right\rfloor \epsilon$

0 ϵ 2ϵ $n\epsilon$ $N\epsilon = 1$
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\epsilon = 1/N$.

\[
Y = \left\lfloor \frac{X}{\epsilon} \right\rfloor \epsilon
\]
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \leq n\varepsilon$ for $n = 1, \ldots, N$.
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\epsilon = 1/N$. Define $Y = n\epsilon$ if $(n - 1)\epsilon < X \leq n\epsilon$ for $n = 1, \ldots, N$. Then $|X - Y| \leq \epsilon$.
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\epsilon = 1/N$. Define $Y = n\epsilon$ if $(n - 1)\epsilon < X \leq n\epsilon$ for $n = 1, \ldots, N$. Then $|X - Y| \leq \epsilon$ and Y is discrete:
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\epsilon = 1/N$. Define $Y = n\epsilon$ if $(n-1)\epsilon < X \leq n\epsilon$ for $n = 1, \ldots, N$. Then $|X - Y| \leq \epsilon$ and Y is discrete: $Y \in \{\epsilon, 2\epsilon, \ldots, N\epsilon\}$.
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$. Define $Y = n\varepsilon$ if $(n - 1)\varepsilon < X \leq n\varepsilon$ for $n = 1, \ldots, N$. Then $|X - Y| \leq \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, \ldots, N\varepsilon\}$. Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for $n = 1, \ldots, N$.
Uniformly at Random in $[0, 1]$.

Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \leq n\varepsilon$ for $n = 1, \ldots, N$.

Then $|X - Y| \leq \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, \ldots, N\varepsilon\}$.

Also, $\Pr[Y = n\varepsilon] = \frac{1}{N}$ for $n = 1, \ldots, N$.

Thus, X is ‘almost discrete.’
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$. It defines another way of choosing X at random in $[0, 1]$. Note that X is more likely to be closer to 1 than to 0. One has $\Pr[X \leq x] = \int_{-\infty}^{x} f(u) \, du = x^2$ for $x \in [0, 1]$. Also, $\Pr[X \in (x, x+\varepsilon)] = \int_{x}^{x+\varepsilon} f(u) \, du \approx f(x) \varepsilon$.
Nonuniformly at Random in \([0, 1]\).

\[f(x) = 2x1\{0 \leq x \leq 1\} \]

\[Pr[X \in A] = \int_A f(x)\,dx \]

\(x \)
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$.

$Pr[X \in A] = \int_{A} f(x) \, dx$
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$. It defines another way of choosing X at random in $[0, 1]$.

$f(x) = 2x1\{0 \leq x \leq 1\}$

$Pr[X \in A] = \int_A f(x) \, dx$
Nonuniformly at Random in $[0,1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$. It defines another way of choosing X at random in $[0,1]$. Note that X is more likely to be closer to 1 than to 0.
Nonuniformly at Random in \([0, 1]\).

This figure shows a different choice of \(f(x) \geq 0\) with \(\int_{-\infty}^{\infty} f(x) dx = 1\). It defines another way of choosing \(X\) at random in \([0, 1]\).

Note that \(X\) is more likely to be closer to 1 than to 0.

One has
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$. It defines another way of choosing X at random in $[0, 1]$. Note that X is more likely to be closer to 1 than to 0. One has $Pr[X \leq x] = \int_{-\infty}^{x} f(u) \, du = x^2$
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$. It defines another way of choosing X at random in $[0, 1]$. Note that X is more likely to be closer to 1 than to 0. One has $Pr[X \leq x] = \int_{-\infty}^{x} f(u) \, du = x^2$ for $x \in [0, 1]$.
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$. It defines another way of choosing X at random in $[0, 1]$. Note that X is more likely to be closer to 1 than to 0. One has $Pr[X \leq x] = \int_{-\infty}^{x} f(u) \, du = x^2$ for $x \in [0, 1]$. Also, $Pr[X \in (x, x+\varepsilon)] = \int_{x}^{x+\varepsilon} f(u) \, du$
Nonuniformly at Random in $[0, 1]$.

This figure shows a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x)dx = 1$. It defines another way of choosing X at random in $[0, 1]$. Note that X is more likely to be closer to 1 than to 0.

One has $Pr[X \leq x] = \int_{-\infty}^{x} f(u)du = x^2$ for $x \in [0, 1]$.

Also, $Pr[X \in (x, x + \varepsilon)] = \int_{x}^{x+\varepsilon} f(u)du \approx f(x)\varepsilon$.
Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$. It defines another way of choosing X at random in $[0,1]$. Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $\Pr[X \in [0,1/3)] = \int_{0}^{1/3} x \, dx = \frac{2}{9}$.

Thus, $\Pr[X \in [0,1/3)] = \Pr[X \in [2/3,1)] = \frac{2}{9}$ and $\Pr[X \in [1/3,2/3)] = \frac{5}{9}$.

Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with
\[\int_{-\infty}^{\infty} f(x) \, dx = 1. \]

It defines another way of choosing X at random in $[0,1]$. Note that X is more likely to be closer to $1/2$ than to 0 or 1. For instance,
\[\Pr[X \in [0,1/3]] = \int_{1/3}^{0} 4x \, dx = \frac{2}{9}. \]

Thus, $\Pr[X \in [0,1/3]] = \Pr[X \in [2/3,1]] = \frac{2}{9}$ and $\Pr[X \in [1/3,2/3]] = \frac{5}{9}$.

\[f(x) \]
Another Nonuniform Choice at Random in $[0, 1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $
\int_{-\infty}^{\infty} f(x) \, dx = 1$.

Thus,
\[
\Pr\{X \in [0, \frac{1}{3}]\} = \Pr\{X \in [\frac{2}{3}, 1]\} = 2/9
\]
and
\[
\Pr\{X \in [\frac{1}{3}, \frac{2}{3}]\} = 5/9.
\]
Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $
\int_{-\infty}^{\infty} f(x)dx = 1$.

It defines another way of choosing X at random in $[0,1]$.
Another Nonuniform Choice at Random in $[0, 1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) \, dx = 1$.

It defines another way of choosing X at random in $[0, 1]$.

Note that X is more likely to be closer to $1/2$ than to 0 or 1.
Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with \(\int_{-\infty}^{\infty} f(x) \, dx = 1 \).

It defines another way of choosing X at random in $[0,1]$.

Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $Pr[X \in [0,1/3]] =$
Another Nonuniform Choice at Random in $[0, 1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $
\int_{-\infty}^{\infty} f(x) \, dx = 1$.

It defines another way of choosing X at random in $[0, 1]$.

Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_{0}^{1/3} 4x \, dx =$
Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x)dx = 1$. It defines another way of choosing X at random in $[0,1]$. Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $Pr[X \in [0,1/3]] = \int_{0}^{1/3} 4xdx = 2 \left[x^2 \right]_0^{1/3} = \frac{2}{9}$.

Another Nonuniform Choice at Random in $[0, 1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x)dx = 1$.

It defines another way of choosing X at random in $[0, 1]$.

Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_{0}^{1/3} 4xdx = 2\left[x^2\right]_{0}^{1/3} = \frac{2}{9}$.

Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$.
Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in $[0,1]$. Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $Pr[X \in [0,1/3]] = \int_{0}^{1/3} 4xdx = 2[x^2]_{0}^{1/3} = \frac{2}{9}$.

Thus, $Pr[X \in [0,1/3]] = Pr[X \in [2/3,1]] = \frac{2}{9}$ and $Pr[X \in [1/3,2/3]] =$
Another Nonuniform Choice at Random in $[0,1]$.

This figure shows yet a different choice of $f(x) \geq 0$ with $\int_{-\infty}^{\infty} f(x)\,dx = 1$.

It defines another way of choosing X at random in $[0,1]$.

Note that X is more likely to be closer to $1/2$ than to 0 or 1.

For instance, $Pr[X \in [0,1/3]] = \int_{0}^{1/3} 4x\,dx = 2 [x^2]_{0}^{1/3} = \frac{2}{9}$.

Thus, $Pr[X \in [0,1/3]] = Pr[X \in [2/3,1]] = \frac{2}{9}$ and $Pr[X \in [1/3,2/3]] = \frac{5}{9}$.
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(\infty) = 1$.

Define X by $\Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$.

Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup \cdots \cup (a_n, b_n)] = \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)] = F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx} F(x)$.

Then, $\Pr[X \in (x, x+\varepsilon)] = F(x+\varepsilon) - F(x) \approx f(x) \varepsilon$.

Here, $F(x)$ is called the cumulative distribution function (cdf) of X and $f(x)$ is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them $F_X(x)$ and $f_X(x)$.
General Random Choice in \(\mathbb{R} \)

Let \(F(x) \) be a nondecreasing function
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Here, $F(x)$ is called the cumulative distribution function (cdf) of X, and $f(x)$ is the probability density function (pdf) of X. To indicate that F and f correspond to the RV X, we will write them $F_X(x)$ and $f_X(x)$.
Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $\Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Then, $F(x)$ is called the cumulative distribution function (cdf) of X and $f(x) = \frac{d}{dx} F(x)$ is the probability density function (pdf) of X. To indicate that F and f correspond to the RV X, we will write $F_X(x)$ and $f_X(x)$.
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)]$$
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $\Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] = \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)]$$
Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $\Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)]$$

$$= \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)]$$

$$= F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).$$
General Random Choice in \(\mathbb{R} \)

Let \(F(x) \) be a nondecreasing function with \(F(-\infty) = 0 \) and \(F(+\infty) = 1 \).

Define \(X \) by \(\Pr[X \in (a, b)] = F(b) - F(a) \) for \(a < b \). Also, for \(a_1 < b_1 < a_2 < b_2 < \cdots < b_n \),

\[
\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] \\
= \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)] \\
= F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).
\]

Let \(f(x) = \frac{d}{dx} F(x) \).
General Random Choice in \(\mathbb{R} \)

Let \(F(x) \) be a nondecreasing function with \(F(-\infty) = 0 \) and \(F(+\infty) = 1 \).

Define \(X \) by \(\Pr[X \in (a, b)] = F(b) - F(a) \) for \(a < b \). Also, for \(a_1 < b_1 < a_2 < b_2 < \cdots < b_n \),

\[
\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] \\
= \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)] \\
= F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).
\]

Let \(f(x) = \frac{d}{dx} F(x) \). Then,

\[
\Pr[X \in (x, x + \varepsilon)] =
\]
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $\Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)]$$

$$= \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)]$$

$$= F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx} F(x)$. Then,

$$\Pr[X \in (x, x + \epsilon)] = F(x + \epsilon) - F(x)$$
General Random Choice in \(\mathbb{R} \)

Let \(F(x) \) be a nondecreasing function with \(F(-\infty) = 0 \) and \(F(+\infty) = 1 \).

Define \(X \) by \(\Pr[X \in (a, b)] = F(b) - F(a) \) for \(a < b \). Also, for \(a_1 < b_1 < a_2 < b_2 < \cdots < b_n \),

\[
\Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] = \Pr[X \in (a_1, b_1)] + \cdots + \Pr[X \in (a_n, b_n)] = F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).
\]

Let \(f(x) = \frac{d}{dx} F(x) \). Then,

\[
\Pr[X \in (x, x + \varepsilon)] = F(x + \varepsilon) - F(x) \approx f(x) \varepsilon.
\]

Here, \(F(x) \) is called the cumulative distribution function (cdf) of \(X \).
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] = Pr[X \in (a_1, b_1)] + \cdots + Pr[X \in (a_n, b_n)] = F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx} F(x)$. Then,

$$Pr[X \in (x, x + \varepsilon)] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, $F(x)$ is called the cumulative distribution function (cdf) of X and $f(x)$ is the probability density function (pdf) of X.
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] = Pr[X \in (a_1, b_1)] + \cdots + Pr[X \in (a_n, b_n)] = F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).$$

Let $f(x) = \frac{d}{dx} F(x)$. Then,

$$Pr[X \in (x, x + \epsilon)] = F(x + \epsilon) - F(x) \approx f(x) \epsilon.$$

Here, $F(x)$ is called the cumulative distribution function (cdf) of X and $f(x)$ is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write $F_X(x)$ and $f_X(x)$.
General Random Choice in \mathbb{R}

Let $F(x)$ be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b)] = F(b) - F(a)$ for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

\[
Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n)] \\
= Pr[X \in (a_1, b_1)] + \cdots + Pr[X \in (a_n, b_n)] \\
= F(b_1) - F(a_1) + \cdots + F(b_n) - F(a_n).
\]

Let $f(x) = \frac{d}{dx} F(x)$. Then,

\[
Pr[X \in (x, x + \varepsilon)] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.
\]

Here, $F(x)$ is called the cumulative distribution function (cdf) of X and $f(x)$ is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them $F_X(x)$ and $f_X(x)$.

\[Pr[X \in (x, x + \varepsilon)] \]

Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'
$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:
\(Pr[X \in (x, x + \varepsilon)] \)

An illustration of \(Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon \):
$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

Thus, the pdf is the ‘local probability by unit length.’
$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

Thus, the pdf is the ‘local probability by unit length.’

It is the ‘probability density.’
Discrete Approximation

Fix $\varepsilon \ll 1$ and let $Y = n \varepsilon$ if $X \in (n \varepsilon, (n + 1) \varepsilon]$. Thus, $\Pr[Y = n \varepsilon] = \mathcal{F}_X((n + 1) \varepsilon) - \mathcal{F}_X(n \varepsilon)$.

Note that $|X - Y| \leq \varepsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx} \mathcal{F}_X(x)$, then $\mathcal{F}_X(x + \varepsilon) - \mathcal{F}_X(x) \approx f_X(x) \varepsilon$.

Hence, $\Pr[Y = n \varepsilon] \approx f_X(n \varepsilon) \varepsilon$.

Thus, we can think of X of being almost discrete with $\Pr[X = n \varepsilon] \approx f_X(n \varepsilon) \varepsilon$.
Discrete Approximation

Fix \(\epsilon \ll 1 \)
Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon,(n+1)\varepsilon]$.
Discrete Approximation

Fix $\epsilon \ll 1$ and let $Y = n\epsilon$ if $X \in (n\epsilon, (n+1)\epsilon]$. Thus, $Pr[Y = n\epsilon] = F_X((n+1)\epsilon) - F_X(n\epsilon)$.

Note that $|X - Y| \leq \epsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x+\epsilon) - F_X(x) \approx f_X(x)\epsilon$. Hence, $Pr[Y = n\epsilon] \approx f_X(n\epsilon)\epsilon$. Thus, we can think of X as almost discrete with $Pr[X = n\epsilon] \approx f_X(n\epsilon)\epsilon$.
Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \leq \varepsilon$
Discrete Approximation

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \leq \varepsilon$ and Y is a discrete random variable.
Discrete Approximation

Fix $\epsilon \ll 1$ and let $Y = n\epsilon$ if $X \in (n\epsilon, (n+1)\epsilon]$. Thus, $Pr[Y = n\epsilon] = F_X((n+1)\epsilon) - F_X(n\epsilon)$. Note that $|X - Y| \leq \epsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx} F_X(x)$,
Discrete Approximation

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \leq \varepsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx} F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.
Discrete Approximation

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \leq \varepsilon$ and Y is a discrete random variable.

Also, if $f_X(x) = \frac{d}{dx} F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $\Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \leq \varepsilon$ and Y is a discrete random variable.

Also, if $f_X(x) = \frac{d}{dx} F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $\Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of X of being almost discrete with $\Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.
Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$. Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$. Note that $|X - Y| \leq \varepsilon$ and Y is a discrete random variable. Also, if $f_X(x) = \frac{d}{dx} F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$. Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$. Thus, we can think of X of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.
Example: CDF

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: \(Y \)

distance from center.

Probability within \(y \) of center:

\[
\Pr[Y \leq y] = \frac{\text{area of small circle}}{\text{area of dartboard}} = \frac{\pi y^2}{\pi} = y^2.
\]

Hence,

\[
F_Y(y) = \Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]
Example: CDF

Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y
Distance from center.
Probability within y of center:
$P_r\left[Y \leq y\right] = \frac{\text{area of small circle}}{\text{area of dartboard}} = \frac{\pi y^2}{\pi} = y^2$.

Hence, $F_Y(y) = P_r\left[Y \leq y\right] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \leq y \leq 1 \\ 1 & \text{for } y > 1 \end{cases}$.
Example: CDF

Example: hitting random location on gas tank.
Random location on circle.
Example: CDF

Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y distance from center.

$\Pr[Y \leq y] = \frac{\text{area of small circle}}{\text{area of dartboard}} = \frac{\pi y^2}{\pi} = y^2$. Hence,

$$F_Y(y) = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}$$
Example: CDF

- Example: hitting random location on gas tank.
- Random location on circle.

Random Variable: Y distance from center.

Probability within y of center:

$$F_Y(y) = \begin{cases}
0 & \text{for } y < 0 \\
\frac{y^2}{1} & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}$$
Example: CDF

Example: hitting random location on gas tank. Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

\[
Pr[Y \leq y] = \frac{\text{area of small circle}}{\text{area of dartboard}}
\]
Example: CDF

Example: hitting random location on gas tank. Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

$$Pr[Y \leq y] = \frac{\text{area of small circle}}{\text{area of dartboard}} = \frac{\pi y^2}{\pi}$$
Example: CDF

Example: hitting random location on gas tank. Random location on circle.

Random Variable: \(Y \) distance from center.

Probability within \(y \) of center:

\[
Pr[Y \leq y] = \frac{\text{area of small circle}}{\text{area of dartboard}} = \frac{\pi y^2}{\pi} = y^2.
\]

Hence,

\[
F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]
Calculation of event with dartboard.

Probability between .5 and .6 of center?

Recall CDF $F_Y(y) = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}$

$$Pr[0.5 < Y \leq 0.6] = F_Y(0.6) - F_Y(0.5) = 0.36 - 0.25 = 0.11$$
Calculation of event with dartboard..

Probability between .5 and .6 of center?
Recall CDF.

\[
F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
 y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]

\[
Pr[0.5 < Y \leq 0.6] = F_Y(0.6) - F_Y(0.5) = 0.36 - 0.25 = 0.11
\]
Calculation of event with dartboard..

Probability between .5 and .6 of center?
Recall CDF.

\[
F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]

\[
Pr[0.5 < Y \leq 0.6] = Pr[Y \leq 0.6] - Pr[Y \leq 0.5] = 0.36 - 0.25 = 0.11
\]
Calculation of event with dartboard.

Probability between .5 and .6 of center?
Recall CDF.

\[F_Y(y) = \Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases} \]

\[\Pr[0.5 < Y \leq 0.6] = \Pr[Y \leq 0.6] - \Pr[Y \leq 0.5] = F_Y(0.6) - F_Y(0.5) \]

\[= 0.36 - 0.25 = 0.11 \]
Calculation of event with dartboard.

Probability between .5 and .6 of center?
Recall CDF.

\[F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases} \]

\[
Pr[0.5 < Y \leq 0.6] = Pr[Y \leq 0.6] - Pr[Y \leq 0.5] = F_Y(0.6) - F_Y(0.5) = .36 - .25
\]
Calculation of event with dartboard.

Probability between .5 and .6 of center?
Recall CDF.

\[
F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]

\[
Pr[0.5 < Y \leq 0.6] = Pr[Y \leq 0.6] - Pr[Y \leq 0.5]
= F_Y(0.6) - F_Y(0.5)
= .36 - .25
= .11
\]
Example: “Dart” board.
Example: “Dart” board.
Recall that

\[F_Y(y) = \Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
 y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases} \]
Example: “Dart” board.
Recall that

\[
F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]

\[
f_Y(y) = F'_Y(y) = \begin{cases}
0 & \text{for } y < 0 \\
2y & \text{for } 0 \leq y \leq 1 \\
0 & \text{for } y > 1
\end{cases}
\]
Example: “Dart” board.
Recall that

\[F_Y(y) = Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases} \]

\[f_Y(y) = F'_Y(y) = \begin{cases}
0 & \text{for } y < 0 \\
2y & \text{for } 0 \leq y \leq 1 \\
0 & \text{for } y > 1
\end{cases} \]

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.
Example: “Dart” board.
Recall that

\[
F_Y(y) = \Pr[Y \leq y] = \begin{cases}
0 & \text{for } y < 0 \\
y^2 & \text{for } 0 \leq y \leq 1 \\
1 & \text{for } y > 1
\end{cases}
\]

\[
f_Y(y) = F_Y'(y) = \begin{cases}
0 & \text{for } y < 0 \\
2y & \text{for } 0 \leq y \leq 1 \\
0 & \text{for } y > 1
\end{cases}
\]

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information. Use whichever is convenient.
Target
Target

Random Variable

Event \(\{Y \leq y\} \)

Outcome

\[F_Y(y) \]

\[f_Y(y) \]

\[y^2 \]

\[2y \]
$U[a, b]$
$U[a, b]$
The exponential distribution with parameter $\lambda > 0$ is defined by

$$f_X(x) = \lambda e^{-\lambda x} \{ x \geq 0 \}$$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \geq 0. \end{cases}$$

Note that $\Pr[X > t] = e^{-\lambda t}$ for $t > 0$.
The exponential distribution with parameter $\lambda > 0$ is defined by

$$f_X(x) = \lambda e^{-\lambda x}1\{x \geq 0\}$$
The exponential distribution with parameter $\lambda > 0$ is defined by

$$f_X(x) = \lambda e^{-\lambda x} \mathbf{1}_{\{x \geq 0\}}$$

$$F_X(x) = \begin{cases}
0, & \text{if } x < 0 \\
1 - e^{-\lambda x}, & \text{if } x \geq 0.
\end{cases}$$
Expo(λ)

The exponential distribution with parameter $λ > 0$ is defined by

$$f_X(x) = λ e^{-λx} 1\{x ≥ 0\}$$

$$F_X(x) = \begin{cases}
0, & \text{if } x < 0 \\
1 - e^{-λx}, & \text{if } x ≥ 0.
\end{cases}$$

Note that $Pr[X > t] = e^{-λt}$ for $t > 0$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = \Pr[X \leq x]$ for all x.

Recall that $\Pr[X \in (x, x+\delta)] \approx f_X(x)\delta$.

Think of X taking discrete values $n\delta$ for $n = \ldots, -2, -1, 0, 1, 2, \ldots$ with $\Pr[X = n\delta] = f_X(n\delta)\delta$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

 Cumulative Distribution Function (cdf).

 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u)du$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

 Cumulative Distribution Function (cdf).

 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u)du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u) du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

Probability Density Function (pdf).
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

Cumulative Distribution Function (cdf).

$Pr[a < X \leq b] = F_X(b) - F_X(a)$

1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u)du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

Probability Density Function (pdf).

$Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$
Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.
 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$
 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u) \, du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
 Probability Density Function (pdf).
 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x) \, dx = F_X(b) - F_X(a)$
 2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.
 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$
 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u)du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
 Probability Density Function (pdf).
 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$
 2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.
 2.2 $\int_{-\infty}^{\infty} f_X(x)dx = 1$.

Recall that $Pr[X \in (x, x+\delta)] \approx f_X(x) \delta$.
Think of X taking discrete values $n\delta$ for $n = \ldots, -2, -1, 0, 1, 2, \ldots$ with $Pr[X = n\delta] = f_X(n\delta)\delta$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.

 Cumulative Distribution Function (cdf).

 $Pr[a < X \leq b] = F_X(b) - F_X(a)$

 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.

 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u)du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.

 Probability Density Function (pdf).

 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$

 2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.

 2.2 $\int_{-\infty}^{\infty} f_X(x)dx = 1$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$.

Random Variables

Continuous random variable X, specified by

1. $F_X(x) = Pr[X \leq x]$ for all x.
 Cumulative Distribution Function (cdf).
 $Pr[a < X \leq b] = F_X(b) - F_X(a)$
 1.1 $0 \leq F_X(x) \leq 1$ for all $x \in \mathbb{R}$.
 1.2 $F_X(x) \leq F_X(y)$ if $x \leq y$.

2. Or $f_X(x)$, where $F_X(x) = \int_{-\infty}^{x} f_X(u)du$ or $f_X(x) = \frac{d(F_X(x))}{dx}$.
 Probability Density Function (pdf).
 $Pr[a < X \leq b] = \int_{a}^{b} f_X(x)dx = F_X(b) - F_X(a)$
 2.1 $f_X(x) \geq 0$ for all $x \in \mathbb{R}$.
 2.2 $\int_{-\infty}^{\infty} f_X(x)dx = 1$.

Recall that $Pr[X \in (x, x + \delta)] \approx f_X(x)\delta$. Think of X taking discrete values $n\delta$ for $n = \ldots, -2, -1, 0, 1, 2, \ldots$ with $Pr[X = n\delta] = f_X(n\delta)\delta$.
The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of $f_X(x)$.

$$Pr[x < X < x + \delta] \approx f_X(x) \delta$$

$$Pr[X \leq x] = F_X(x) = \int_{x-\infty}^{x} f_X(u) \, du$$
The pdf $f_X(x)$ is a nonnegative function that integrates to 1.
The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X.
The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X.

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$
The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X.

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

$$Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(u)du$$
Summary

Continuous Probability

1. pdf:

\[
Pr\left[X \in (x, x + \delta]\right] = f_X(x)\delta.
\]

2. CDF:

\[
Pr\left[X \leq x\right] = F_X(x) = \int_{-\infty}^{\infty} f_X(y) dy.
\]

3. Uniform [a, b]:

\[
f_X(x) = \begin{cases}
\frac{1}{b-a} & \text{if } a \leq x \leq b \\
0 & \text{otherwise}
\end{cases};
\]

\[
F_X(x) = \begin{cases}
\frac{x-a}{b-a} & \text{if } a \leq x \leq b \\
1 & \text{if } x > b \\
0 & \text{if } x < a
\end{cases}.
\]

4. Exponential (\lambda):

\[
f_X(x) = \lambda e^{-\lambda x} \quad \text{for } x \geq 0;
\]

\[
F_X(x) = 1 - e^{-\lambda x} \quad \text{for } x \leq 0.
\]

5. Target:

\[
f_X(x) = 2x \quad \text{if } 0 \leq x \leq 1;
\]

\[
F_X(x) = x^2 \quad \text{for } 0 \leq x \leq 1.
\]
Summary

Continuous Probability

1. pdf: $Pr[X \in (x, x + \delta)] = f_X(x)\delta$.
Summary

Continuous Probability

1. pdf: \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)
2. CDF:
Summary

1. **pdf**: \(Pr[X \in (x, x+\delta)] = f_X(x)\delta. \)
2. **CDF**: \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)
Summary

Continuous Probability

1. pdf: \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)
2. CDF: \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)
3. \(U[a, b] : \)
1. pdf: \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)
2. CDF: \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)
3. \(U[a, b] \): \(f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}; \)

Continuous Probability
1. **pdf:** \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)

2. **CDF:** \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)

3. **U[a, b]:** \(f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}; F_X(x) = \frac{x-a}{b-a} \text{ for } a \leq x \leq b. \)
Summary

Continuous Probability

1. pdf: $Pr[X \in (x, x + \delta)] = f_X(x)\delta$.
2. CDF: $Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)\,dy$.
3. $U[a, b]$: $f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}; F_X(x) = \frac{x-a}{b-a}$ for $a \leq x \leq b$.
4. $Expo(\lambda)$:
1. pdf: \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)

2. CDF: \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)

3. \(U[a, b] \): \(f_X(x) = \frac{1}{b-a} \{ a \leq x \leq b \}; F_X(x) = \frac{x-a}{b-a} \) for \(a \leq x \leq b. \)

4. \(Expo(\lambda) \):
 \(f_X(x) = \lambda \exp\{-\lambda x\} \{ x \geq 0 \}; \)
Continuous Probability

1. pdf: \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)
2. CDF: \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)
3. \(U[a, b] \): \(f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\} \); \(F_X(x) = \frac{x-a}{b-a} \) for \(a \leq x \leq b \).
4. \(Expo(\lambda) \):
 \(f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\} \);
 \(F_X(x) = 1 - \exp\{-\lambda x\} \) for \(x \leq 0 \).
Continuous Probability

1. pdf: \(Pr[X \in (x, x + \delta)] = f_X(x)\delta. \)
2. CDF: \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy. \)
3. \(U[a, b]: f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}; F_X(x) = \frac{x-a}{b-a} \) for \(a \leq x \leq b. \)
4. \(Expo(\lambda): \)
 \(f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \) for \(x \leq 0. \)
5. Target:
Continuous Probability

1. **pdf:** \(Pr[X \in (x, x + \delta)] = f_X(x)\delta \).
2. **CDF:** \(Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y)dy \).
3. **U[\(a, b]\):** \(f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}; F_X(x) = \frac{x-a}{b-a} \) for \(a \leq x \leq b\).
4. **Expo(\(\lambda\)):**
 \(f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}; F_X(x) = 1 - \exp\{-\lambda x\} \) for \(x \leq 0\).
5. **Target:** \(f_X(x) = 2x 1\{0 \leq x \leq 1\}; \)
Summary

Continuous Probability

1. **pdf**: $Pr[X \in (x, x + \delta)] = f_X(x) \delta$.
2. **CDF**: $Pr[X \leq x] = F_X(x) = \int_{-\infty}^{x} f_X(y) dy$.
3. **$U[a, b]$**: $f_X(x) = \frac{1}{b-a} 1\{a \leq x \leq b\}; F_X(x) = \frac{x-a}{b-a}$ for $a \leq x \leq b$.
4. **Expo(λ)**:
 $f_X(x) = \lambda \exp\{-\lambda x\} 1\{x \geq 0\}; F_X(x) = 1 - \exp\{-\lambda x\}$ for $x \leq 0$.
5. **Target**: $f_X(x) = 2x 1\{0 \leq x \leq 1\}; F_X(x) = x^2$ for $0 \leq x \leq 1$.