CS70: Lecture 29

Continuous Probability (continued)

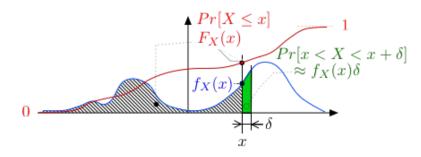
- 1. Review: CDF, PDF
- 2. Examples
- 3. Properties
- 4. Expectation of continuous random variables

Review: Continuous Probability

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0, 1];

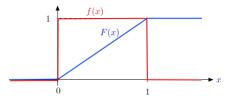
Thus, one cannot define *Pr*[outcome], then *Pr*[event].


Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \mathfrak{R}$. Then, one defines $f_X(x) := \frac{d}{dx}F_X(x)$. Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)]$.

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function (PDF) of X.

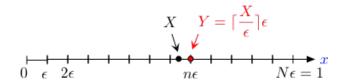

A Picture

The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$
$$Pr[X \le x] = F_x(x) = \int_{-\infty}^x f_X(u)du$$

Uniformly at Random in [0,1].

$$\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$$

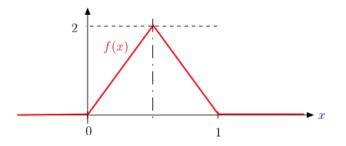

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b)-F(a)=\int_a^b f(x)dx$$

Thus, the probability of an event is the integral of f(x) over the event:

$$Pr[X \in A] = \int_A f(x) dx$$

Uniformly at Random in [0,1].



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N. Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in {\varepsilon, 2\varepsilon, ..., N\varepsilon}$. Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1, ..., N.

Thus, X is 'almost discrete.'

Nonuniform Choice at Random in [0, 1].

This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0, 1].

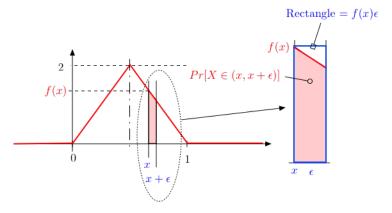
Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.
Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$ and $Pr[X \in [1/3, 2/3]] = \frac{5}{9}$.

General Random Choice in \Re

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$. Define X by $Pr[X \in (a, b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$


Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

To indicate that *F* and *f* correspond to the RV *X*, we will write them $F_X(x)$ and $f_X(x)$.

$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

Discrete Approximation

Fix
$$\varepsilon \ll 1$$
 and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.
Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.
Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.
Also, if $f_X(x) = \frac{d}{dx}F_X(x)$, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of *X* of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Example: hitting random location on gas tank. Random location on circle.

Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$
$$= \frac{\pi y^2}{\pi} = y^2.$$

Hence,

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

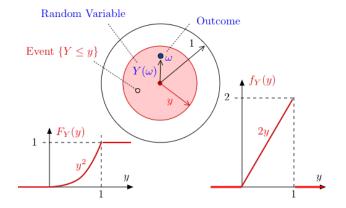
Calculation of event with dartboard..

Probability between .5 and .6 of center? Recall CDF.

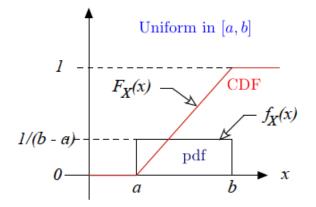
$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= F_Y(0.6) - F_Y(0.5)
= .36 - .25
= .11

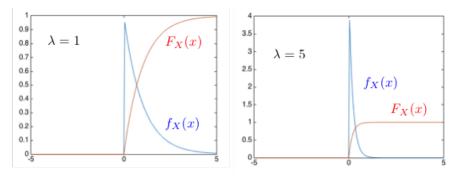

PDF.

Example: "Dart" board. Recall that


$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F_{Y}'(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information. Use whichever is convenient.

Target


U[*a*,*b*]

$Expo(\lambda)$

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$

Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

Some Properties

1. *Expo* is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

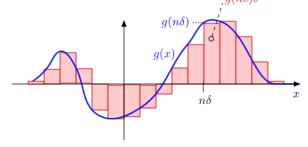
'Used is a good as new.'

2. Scaling *Expo.* Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$\begin{aligned} \Pr[Y > t] &= \Pr[aX > t] = \Pr[X > t/a] \\ &= e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = \Pr[Z > t] \text{ for } Z = Expo(\lambda/a). \end{aligned}$$

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$. Also, $Expo(\lambda) = \frac{1}{\lambda} Expo(1)$.

Expectation


Definition: The expectation of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any *g*, one has $\int g(x) dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = x f_X(x)$.

Examples of Expectation

1.
$$X = U[0, 1]$$
. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 1 dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.$$

2. $X = \text{distance to 0 of dart shot uniformly in unit circle. Then } f_X(x) = 2x1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_0^1 = \frac{2}{3}$$

Examples of Expectation

3.
$$X = Expo(\lambda)$$
. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,
$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_a^b u(x)dv(x) = [u(x)v(x)]_a^b - \int_a^b v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_a^b v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

Hence, $E[X] = \frac{1}{\lambda}$.

Linearity of Expectation

Theorem Expectation is linear. **Proof:** 'As in the discrete case.' **Example 1:** X = U[a, b]. Then (a) $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$. Thus, $E[X] = \int_{-1}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_{a}^{b} = \frac{a+b}{2}.$ (b) X = a + (b - a)Y, Y = U[0, 1]. Hence, $E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$

Example 2: *X*, *Y* are *U*[0,1]. Then

$$E[3X-2Y+5] = 3E[X] - 2E[Y] + 5 = 3\frac{1}{2} - 2\frac{1}{2} + 5 = 5.5.$$

Summary

Continuous Probability

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation is linear.