# CS70: Lecture 29

Continuous Probability (continued)

- 1. Review: CDF, PDF
- 2. Examples
- 3. Properties
- 4. Expectation of continuous random variables

# **Review: Continuous Probability**

Key idea: For a continuous RV, Pr[X = x] = 0 for all  $x \in \Re$ .

Examples: Uniform in [0, 1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

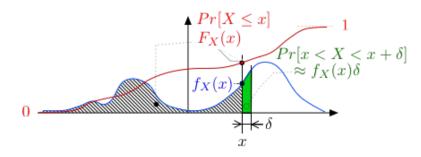
Instead, one starts by defining *Pr*[event].

Thus, one defines  $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \mathfrak{R}$ . Then, one defines  $f_X(x) := \frac{d}{dx}F_X(x)$ . Hence,  $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)]$ .

 $F_X(\cdot)$  is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$  is the probability density function (PDF) of X.

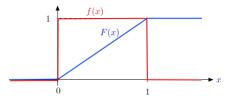
# A Picture



The pdf  $f_X(x)$  is a nonnegative function that integrates to 1. The cdf  $F_X(x)$  is the integral of  $f_X$ .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$
$$Pr[X \le x] = F_x(x) = \int_{-\infty}^x f_X(u)du$$

Uniformly at Random in [0,1].



$$\Pr[X \in (a,b]] = \Pr[X \le b] - \Pr[X \le a] = F(b) - F(a).$$

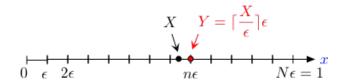
An alternative view is to define  $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$ . Then

$$F(b)-F(a)=\int_a^b f(x)dx$$

Thus, the probability of an event is the integral of f(x) over the event:

$$Pr[X \in A] = \int_A f(x) dx$$

# Uniformly at Random in [0,1].

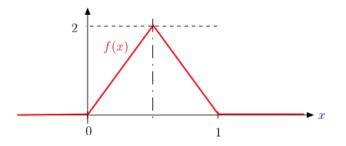


**Discrete Approximation:** Fix  $N \gg 1$  and let  $\varepsilon = 1/N$ .

Define  $Y = n\varepsilon$  if  $(n-1)\varepsilon < X \le n\varepsilon$  for n = 1, ..., N. Then  $|X - Y| \le \varepsilon$  and Y is discrete:  $Y \in {\varepsilon, 2\varepsilon, ..., N\varepsilon}$ . Also,  $Pr[Y = n\varepsilon] = \frac{1}{N}$  for n = 1, ..., N.

Thus, X is 'almost discrete.'

# Nonuniform Choice at Random in [0, 1].



This figure shows yet a different choice of  $f(x) \ge 0$  with  $\int_{-\infty}^{\infty} f(x) dx = 1$ .

It defines another way of choosing X at random in [0, 1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, 
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.  
Thus,  $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$  and  $Pr[X \in [1/3, 2/3]] = \frac{5}{9}$ .

# General Random Choice in $\Re$

Let F(x) be a nondecreasing function with  $F(-\infty) = 0$  and  $F(+\infty) = 1$ . Define X by  $Pr[X \in (a, b]] = F(b) - F(a)$  for a < b. Also, for  $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$ ,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]] \\= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]] \\= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

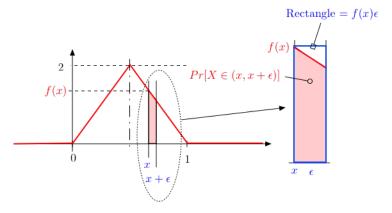
Let 
$$f(x) = \frac{d}{dx}F(x)$$
. Then,  
 $Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$ 

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

To indicate that *F* and *f* correspond to the RV *X*, we will write them  $F_X(x)$  and  $f_X(x)$ .

# $Pr[X \in (x, x + \varepsilon)]$

An illustration of  $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$ :



Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

## **Discrete Approximation**

Fix 
$$\varepsilon \ll 1$$
 and let  $Y = n\varepsilon$  if  $X \in (n\varepsilon, (n+1)\varepsilon]$ .  
Thus,  $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$ .  
Note that  $|X - Y| \le \varepsilon$  and Y is a discrete random variable.  
Also, if  $f_X(x) = \frac{d}{dx}F_X(x)$ , then  $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$ .

Hence,  $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$ .

Thus, we can think of *X* of being almost discrete with  $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$ .



Example: hitting random location on gas tank. Random location on circle.



Random Variable: *Y* distance from center. Probability within *y* of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$
$$= \frac{\pi y^2}{\pi} = y^2.$$

Hence,

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

Calculation of event with dartboard..

Probability between .5 and .6 of center? Recall CDF.

$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$
  
= F<sub>Y</sub>(0.6) - F<sub>Y</sub>(0.5)  
= .36 - .25  
= .11

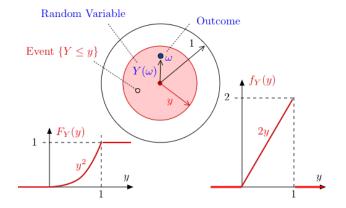
PDF.

#### Example: "Dart" board. Recall that

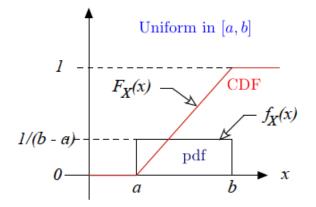
$$F_{Y}(y) = \Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0\\ y^{2} & \text{for } 0 \le y \le 1\\ 1 & \text{for } y > 1 \end{cases}$$
$$f_{Y}(y) = F_{Y}'(y) = \begin{cases} 0 & \text{for } y < 0\\ 2y & \text{for } 0 \le y \le 1\\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information. Use whichever is convenient.

# Target



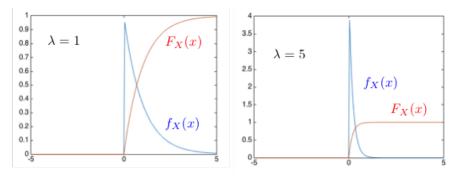
*U*[*a*,*b*]



# $Expo(\lambda)$

# The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0\\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$



Note that  $Pr[X > t] = e^{-\lambda t}$  for t > 0.

# Some Properties

**1.** *Expo* is memoryless. Let  $X = Expo(\lambda)$ . Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

**2. Scaling** *Expo.* Let  $X = Expo(\lambda)$  and Y = aX for some a > 0. Then

$$\begin{aligned} \Pr[Y > t] &= \Pr[aX > t] = \Pr[X > t/a] \\ &= e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = \Pr[Z > t] \text{ for } Z = Expo(\lambda/a). \end{aligned}$$

Thus,  $a \times Expo(\lambda) = Expo(\lambda/a)$ . Also,  $Expo(\lambda) = \frac{1}{\lambda} Expo(1)$ .

#### Expectation

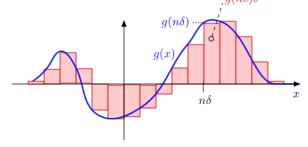
**Definition:** The expectation of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

**Justification:** Say  $X = n\delta$  w.p.  $f_X(n\delta)\delta$  for  $n \in \mathbb{Z}$ . Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any *g*, one has  $\int g(x) dx \approx \sum_n g(n\delta)\delta$ . Choose  $g(x) = x f_X(x)$ .



#### Examples of Expectation

1. 
$$X = U[0, 1]$$
. Then,  $f_X(x) = 1\{0 \le x \le 1\}$ . Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 1 dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2}.$$

2.  $X = \text{distance to 0 of dart shot uniformly in unit circle. Then } f_X(x) = 2x1\{0 \le x \le 1\}$ . Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_0^1 = \frac{2}{3}$$

### Examples of Expectation

3. 
$$X = Expo(\lambda)$$
. Then,  $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$ . Thus,  
$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_a^b u(x)dv(x) = [u(x)v(x)]_a^b - \int_a^b v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_a^b v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

Hence,  $E[X] = \frac{1}{\lambda}$ .

#### Linearity of Expectation

Theorem Expectation is linear. **Proof:** 'As in the discrete case.' **Example 1:** X = U[a, b]. Then (a)  $f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$ . Thus,  $E[X] = \int_{-1}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[ \frac{x^2}{2} \right]_{a}^{b} = \frac{a+b}{2}.$ (b) X = a + (b - a)Y, Y = U[0, 1]. Hence,  $E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$ 

**Example 2:** *X*, *Y* are *U*[0,1]. Then

$$E[3X-2Y+5] = 3E[X] - 2E[Y] + 5 = 3\frac{1}{2} - 2\frac{1}{2} + 5 = 5.5.$$

# Summary

Continuous Probability

- 1. pdf:  $Pr[X \in (x, x + \delta]] = f_X(x)\delta$ .
- 2. CDF:  $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$ .
- 3. U[a,b],  $Expo(\lambda)$ , target.
- 4. Expectation:  $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$ .
- 5. Expectation is linear.