CS70: Lecture 29

Continuous Probability (continued)

CS70: Lecture 29

Continuous Probability (continued)

CS70: Lecture 29

Continuous Probability (continued)

- 1. Review: CDF, PDF
- 2. Examples
- 3. Properties
- 4. Expectation of continuous random variables

Key idea:

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define Pr[outcome],

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define Pr[outcome], then Pr[event].

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]]$

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining Pr[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x]$

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining Pr[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining Pr[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF)

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define Pr[outcome], then Pr[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function (PDF)

Key idea: For a continuous RV, Pr[X = x] = 0 for all $x \in \Re$.

Examples: Uniform in [0,1];

Thus, one cannot define *Pr*[outcome], then *Pr*[event].

Instead, one starts by defining *Pr*[event].

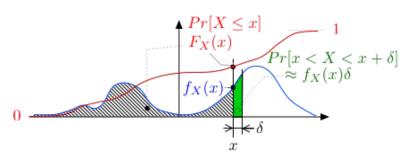
Thus, one defines $Pr[X \in (-\infty, x]] = Pr[X \le x] =: F_X(x), x \in \Re$.

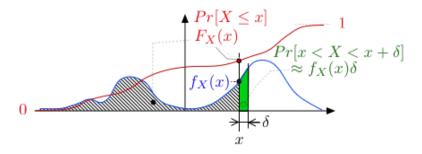
Then, one defines $f_X(x) := \frac{d}{dx} F_X(x)$.

Hence, $f_X(x)\varepsilon \approx Pr[X \in (x, x + \varepsilon)].$

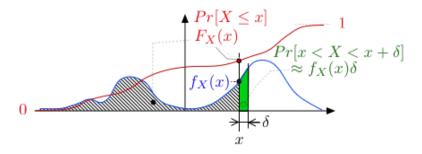
 $F_X(\cdot)$ is the cumulative distribution function (CDF) of X.

 $f_X(\cdot)$ is the probability density function (PDF) of X.

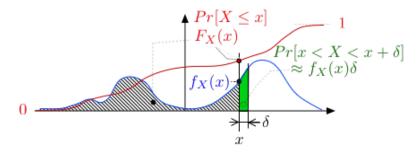




The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

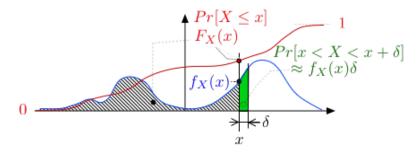


The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .



The pdf $f_X(x)$ is a nonnegative function that integrates to 1. The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

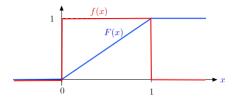


The pdf $f_X(x)$ is a nonnegative function that integrates to 1.

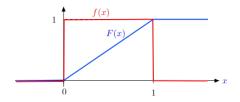
The cdf $F_X(x)$ is the integral of f_X .

$$Pr[x < X < x + \delta] \approx f_X(x)\delta$$

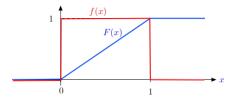
 $Pr[X \le x] = F_X(x) = \int_{-\infty}^{x} f_X(u) du$



$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a]$$

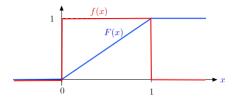


$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$



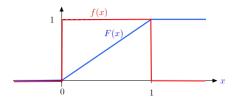
$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) =$



$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

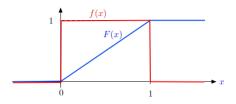
An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}.$



$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b) - F(a) = \int_a^b f(x) dx.$$

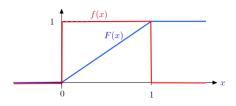


$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

$$F(b)-F(a)=\int_a^b f(x)dx.$$

Thus, the probability of an event is the integral of f(x) over the event:



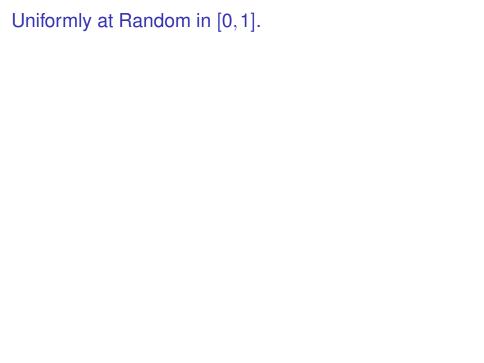
$$Pr[X \in (a,b]] = Pr[X \le b] - Pr[X \le a] = F(b) - F(a).$$

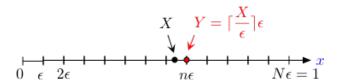
An alternative view is to define $f(x) = \frac{d}{dx}F(x) = 1\{x \in [0,1]\}$. Then

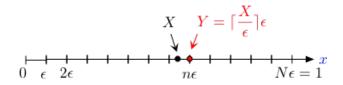
$$F(b) - F(a) = \int_a^b f(x) dx.$$

Thus, the probability of an event is the integral of f(x) over the event:

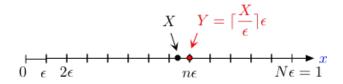
$$Pr[X \in A] = \int_A f(x) dx.$$



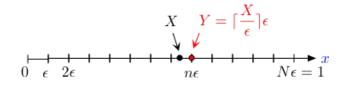




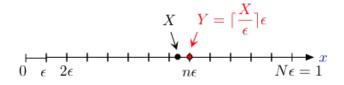
Discrete Approximation:



Discrete Approximation: Fix $N \gg 1$

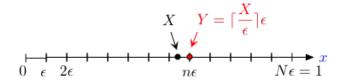


Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

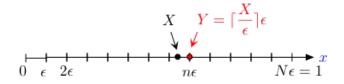
Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

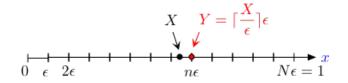
Then $|X - Y| \le \varepsilon$



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

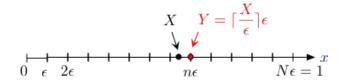
Then $|X - Y| \le \varepsilon$ and Y is discrete:



Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, ..., N\varepsilon\}$.

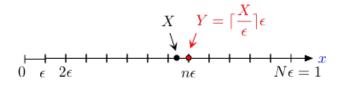


Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, \dots, N\varepsilon\}$.

Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1, ..., N.



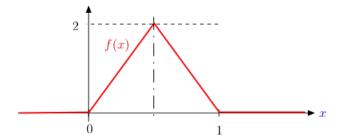
Discrete Approximation: Fix $N \gg 1$ and let $\varepsilon = 1/N$.

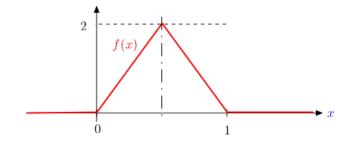
Define $Y = n\varepsilon$ if $(n-1)\varepsilon < X \le n\varepsilon$ for n = 1, ..., N.

Then $|X - Y| \le \varepsilon$ and Y is discrete: $Y \in \{\varepsilon, 2\varepsilon, ..., N\varepsilon\}$.

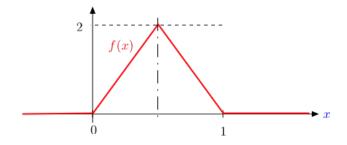
Also, $Pr[Y = n\varepsilon] = \frac{1}{N}$ for n = 1, ..., N.

Thus, X is 'almost discrete.'



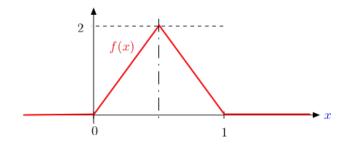


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

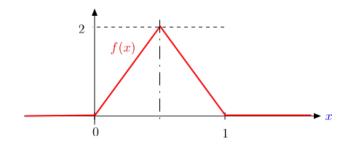
It defines another way of choosing X at random in [0,1].



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

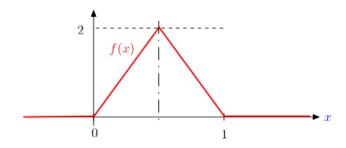


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] =$

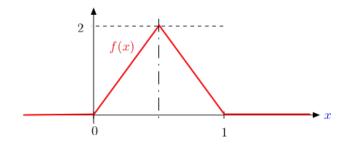


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx =$

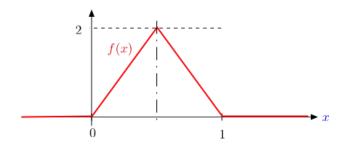


This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2 \left[x^2\right]_0^{1/3} = \frac{2}{9}$.



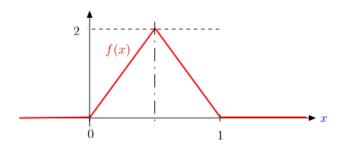
This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance, $Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$.

Thus, $Pr[X \in [0, 1/3]] = Pr[X \in [2/3, 1]] = \frac{2}{9}$



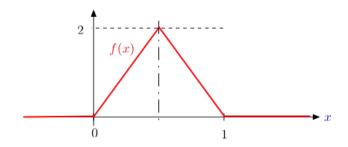
This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.

Thus,
$$Pr[X \in [0,1/3]] = Pr[X \in [2/3,1]] = \frac{2}{9}$$
 and $Pr[X \in [1/3,2/3]] =$



This figure shows yet a different choice of $f(x) \ge 0$ with $\int_{-\infty}^{\infty} f(x) dx = 1$.

It defines another way of choosing X at random in [0,1].

Note that X is more likely to be closer to 1/2 than to 0 or 1.

For instance,
$$Pr[X \in [0, 1/3]] = \int_0^{1/3} 4x dx = 2[x^2]_0^{1/3} = \frac{2}{9}$$
.

Thus,
$$Pr[X \in [0,1/3]] = Pr[X \in [2/3,1]] = \frac{2}{9}$$
 and $Pr[X \in [1/3,2/3]] = \frac{5}{9}$.

Let F(x) be a nondecreasing function

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Let F(x) be a nondecreasing function with $F(-\infty)=0$ and $F(+\infty)=1$.

Define X by $Pr[X \in (a,b]] = F(b) - F(a)$ for a < b.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Define X by $Pr[X \in (a,b]] = F(b) - F(a)$ for a < b. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

 $Pr[X \in (a_1,b_1] \cup (a_2,b_2] \cup (a_n,b_n]]$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

= $Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
 $Pr[X \in (x, x + \varepsilon]] =$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x)$$

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Define *X* by
$$Pr[X \in (a,b]] = F(b) - F(a)$$
 for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, F(x) is called the cumulative distribution function (cdf) of X

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Define *X* by
$$Pr[X \in (a,b]] = F(b) - F(a)$$
 for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Define *X* by
$$Pr[X \in (a,b]] = F(b) - F(a)$$
 for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X,

Let F(x) be a nondecreasing function with $F(-\infty) = 0$ and $F(+\infty) = 1$.

Define *X* by
$$Pr[X \in (a,b]] = F(b) - F(a)$$
 for $a < b$. Also, for $a_1 < b_1 < a_2 < b_2 < \cdots < b_n$,

$$Pr[X \in (a_1, b_1] \cup (a_2, b_2] \cup (a_n, b_n]]$$

$$= Pr[X \in (a_1, b_1]] + \dots + Pr[X \in (a_n, b_n]]$$

$$= F(b_1) - F(a_1) + \dots + F(b_n) - F(a_n).$$

Let
$$f(x) = \frac{d}{dx}F(x)$$
. Then,
$$Pr[X \in (x, x + \varepsilon]] = F(x + \varepsilon) - F(x) \approx f(x)\varepsilon.$$

Here, F(x) is called the cumulative distribution function (cdf) of X and f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them $F_X(x)$ and $f_X(x)$.

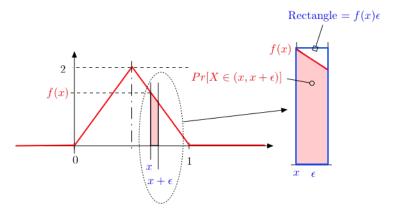
$Pr[X \in (x, x + \varepsilon)]$

$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:

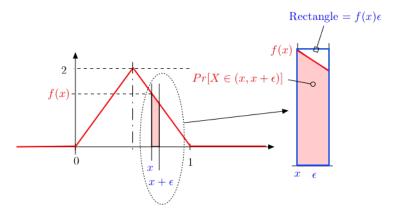
$Pr[X \in (x, x + \varepsilon)]$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



$$Pr[X \in (x, x + \varepsilon)]$$

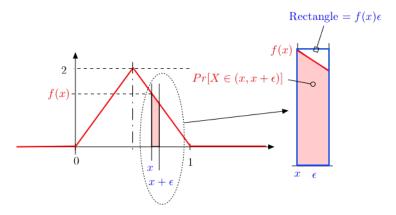
An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



Thus, the pdf is the 'local probability by unit length.'

$$Pr[X \in (x, x + \varepsilon)]$$

An illustration of $Pr[X \in (x, x + \varepsilon)] \approx f_X(x)\varepsilon$:



Thus, the pdf is the 'local probability by unit length.' It is the 'probability density.'

Fix $\varepsilon \ll 1$

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \le \varepsilon$

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus, $Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus,
$$Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$$
.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if
$$f_X(x) = \frac{d}{dx} F_X(x)$$
,

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus,
$$Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$$
.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if
$$f_X(x) = \frac{d}{dx} F_X(x)$$
, then $F_X(x + \varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus,
$$Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$$
.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if
$$f_X(x) = \frac{d}{dx} F_X(x)$$
, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus,
$$Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$$
.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if
$$f_X(x) = \frac{d}{dx} F_X(x)$$
, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of X of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Fix $\varepsilon \ll 1$ and let $Y = n\varepsilon$ if $X \in (n\varepsilon, (n+1)\varepsilon]$.

Thus,
$$Pr[Y = n\varepsilon] = F_X((n+1)\varepsilon) - F_X(n\varepsilon)$$
.

Note that $|X - Y| \le \varepsilon$ and Y is a discrete random variable.

Also, if
$$f_X(x) = \frac{d}{dx} F_X(x)$$
, then $F_X(x+\varepsilon) - F_X(x) \approx f_X(x)\varepsilon$.

Hence, $Pr[Y = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Thus, we can think of X of being almost discrete with $Pr[X = n\varepsilon] \approx f_X(n\varepsilon)\varepsilon$.

Example: hitting random location on gas tank.

Example: hitting random location on gas tank.

Random location on circle.

Example: hitting random location on gas tank.

Random location on circle.

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: *Y* distance from center.

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: Y distance from center.

Probability within *y* of center:

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: *Y* distance from center.

Probability within y of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: Y distance from center.

Probability within y of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

$$= \frac{\pi y^2}{\pi}$$

Example: hitting random location on gas tank.

Random location on circle.

Random Variable: Y distance from center.

Probability within y of center:

$$Pr[Y \le y] = \frac{\text{area of small circle}}{\text{area of dartboard}}$$

= $\frac{\pi y^2}{\pi} = y^2$.

Hence,

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

Probability between .5 and .6 of center?

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$
= $.36 - .25$

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$Pr[0.5 < Y \le 0.6] = Pr[Y \le 0.6] - Pr[Y \le 0.5]$$

= $F_Y(0.6) - F_Y(0.5)$
= $.36 - .25$
= $.11$

Example: "Dart" board.

Example: "Dart" board. Recall that

$$F_Y(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^2 & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

Example: "Dart" board. Becall that

$$F_{Y}(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^{2} & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0 \\ 2y & \text{for } 0 \le y \le 1 \\ 0 & \text{for } y > 1 \end{cases}$$

Example: "Dart" board. Recall that

$$F_{Y}(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^{2} & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0 \\ 2y & \text{for } 0 \le y \le 1 \\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.

Example: "Dart" board. Recall that

$$F_{Y}(y) = Pr[Y \le y] = \begin{cases} 0 & \text{for } y < 0 \\ y^{2} & \text{for } 0 \le y \le 1 \\ 1 & \text{for } y > 1 \end{cases}$$

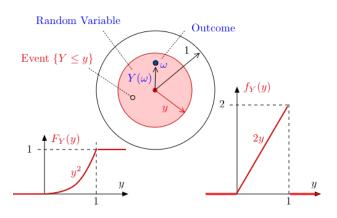
$$f_{Y}(y) = F'_{Y}(y) = \begin{cases} 0 & \text{for } y < 0 \\ 2y & \text{for } 0 \le y \le 1 \\ 0 & \text{for } y > 1 \end{cases}$$

The cumulative distribution function (cdf) and probability distribution function (pdf) give full information.

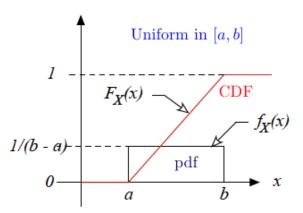
Use whichever is convenient.

Target

Target



U[a,b]

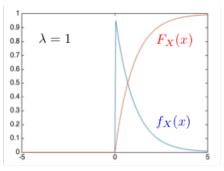


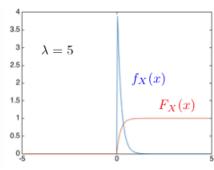
The exponential distribution with parameter $\lambda > 0$ is defined by

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

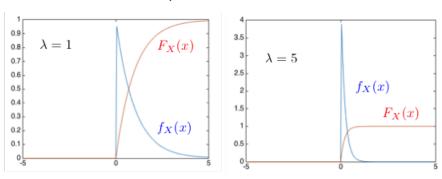
$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$





The exponential distribution with parameter $\lambda > 0$ is defined by $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$

$$F_X(x) = \begin{cases} 0, & \text{if } x < 0 \\ 1 - e^{-\lambda x}, & \text{if } x \ge 0. \end{cases}$$



Note that $Pr[X > t] = e^{-\lambda t}$ for t > 0.

1. Expo is memoryless.

1. *Expo* **is memoryless.** Let $X = Expo(\lambda)$.

$$Pr[X > t + s \mid X > s] =$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} =$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] =$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t]$$
 = $Pr[aX > t] = Pr[X > t/a]$
 = $e^{-\lambda(t/a)} = e^{-(\lambda/a)t}$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

$$= e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t] \text{ for } Z = Expo(\lambda/a).$$

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

Thus, $a \times Expo(\lambda) = Expo(\lambda/a)$.

1. Expo is memoryless. Let $X = Expo(\lambda)$. Then, for s, t > 0,

$$Pr[X > t + s \mid X > s] = \frac{Pr[X > t + s]}{Pr[X > s]}$$
$$= \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}} = e^{-\lambda t}$$
$$= Pr[X > t].$$

'Used is a good as new.'

2. Scaling Expo. Let $X = Expo(\lambda)$ and Y = aX for some a > 0. Then

$$Pr[Y > t] = Pr[aX > t] = Pr[X > t/a]$$

= $e^{-\lambda(t/a)} = e^{-(\lambda/a)t} = Pr[Z > t]$ for $Z = Expo(\lambda/a)$.

Thus,
$$a \times Expo(\lambda) = Expo(\lambda/a)$$
.

Also, $Expo(\lambda) = \frac{1}{\lambda} Expo(1)$.

Expectation Definition:

Definition: The **expectation** of a random variable X with pdf f(x) is *defined* as

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Definition: The **expectation** of a random variable X with pdf f(x) is

defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification:

Definition: The **expectation** of a random variable X with pdf f(x) is

defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$.

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta]$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$.

Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = xf_X(x)$.

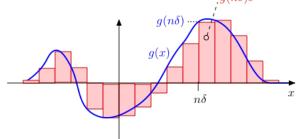
Definition: The **expectation** of a random variable X with pdf f(x) is defined as

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Justification: Say $X = n\delta$ w.p. $f_X(n\delta)\delta$ for $n \in \mathbb{Z}$. Then,

$$E[X] = \sum_{n} (n\delta) Pr[X = n\delta] = \sum_{n} (n\delta) f_X(n\delta) \delta = \int_{-\infty}^{\infty} x f_X(x) dx.$$

Indeed, for any g, one has $\int g(x)dx \approx \sum_n g(n\delta)\delta$. Choose $g(x) = xf_X(x)$.



Examples of Expectation

1. X = U[0,1].

1.
$$X = U[0,1]$$
. Then, $f_X(x) =$

1.
$$X = U[0,1]$$
. Then, $f_X(x) = 1\{0 \le x \le 1\}$.

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx =$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} =$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

2. X = distance to 0 of dart shot uniformly in unit circle.

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^1 x.2x dx =$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.2x dx = \left[\frac{2x^3}{3}\right]_{0}^{1} =$$

1. X = U[0,1]. Then, $f_X(x) = 1\{0 \le x \le 1\}$. Thus,

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x.1 dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}.$$

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_{0}^{1} x \cdot 2x dx = \left[\frac{2x^3}{3}\right]_{0}^{1} = \frac{2}{3}.$$

3. $X = Expo(\lambda)$.

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$.

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = - \int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} =$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} \mathbf{1}\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

3. $X = Expo(\lambda)$. Then, $f_X(x) = \lambda e^{-\lambda x} 1\{x \ge 0\}$. Thus,

$$E[X] = \int_0^\infty x \lambda \, e^{-\lambda x} dx = -\int_0^\infty x de^{-\lambda x}.$$

Recall the integration by parts formula:

$$\int_{a}^{b} u(x)dv(x) = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} v(x)du(x)$$
$$= u(b)v(b) - u(a)v(a) - \int_{a}^{b} v(x)du(x).$$

Thus,

$$\int_0^\infty x de^{-\lambda x} = [xe^{-\lambda x}]_0^\infty - \int_0^\infty e^{-\lambda x} dx$$
$$= 0 - 0 + \frac{1}{\lambda} \int_0^\infty de^{-\lambda x} = -\frac{1}{\lambda}.$$

Hence, $E[X] = \frac{1}{\lambda}$.

Theorem Expectation is linear.

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1:

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}.$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b-a)Y, Y = U[0,1].$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b - a)E[Y] =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b-a)Y$$
, $Y = U[0,1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

Example 2:

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_a^b x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_a^b = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

Example 2: X, Y are U[0, 1].

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_a^b x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^2}{2} \right]_a^b = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X - 2Y + 5] =$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X-2Y+5] = 3E[X]-2E[Y]+5=$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X-2Y+5] = 3E[X]-2E[Y]+5=3\frac{1}{2}-2\frac{1}{2}+5=$$

Theorem Expectation is linear.

Proof: 'As in the discrete case.'

Example 1: X = U[a, b]. Then

(a)
$$f_X(x) = \frac{1}{b-a} 1\{a \le x \le b\}$$
. Thus,

$$E[X] = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b} = \frac{a+b}{2}.$$

(b)
$$X = a + (b - a)Y$$
, $Y = U[0, 1]$. Hence,

$$E[X] = a + (b-a)E[Y] = a + \frac{b-a}{2} = \frac{a+b}{2}.$$

$$E[3X-2Y+5] = 3E[X]-2E[Y]+5=3\frac{1}{2}-2\frac{1}{2}+5=5.5.$$

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation is linear.