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Thus, X is ‘almost discrete’
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f(x) is the probability density function (pdf) of X.

To indicate that F and f correspond to the RV X, we will write them
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Thus, the pdf is the ‘local probability by unit length’
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Example: hitting random location on gas tank.
Random location on circle.

Random Variable: Y distance from center.
Probability within y of center:

area of small circle

< =
Priy <] area of dartboard
_ A
= ==/~

Hence,

0 fory <0

Fy(y)=Prly <y]=g y? for0<y<i
1 fory >1
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Probability between .5 and .6 of center?

Recall CDF.
0 fory <0
Fy(y)=Prl[Y<y]=< y? for0<y<f
1 fory >1
Prl0.5< Y <0.6] = Pr[Y<0.6]—Pr[Y <0.5]

= Fy(0.8) — Fy(0.5)
~ 36-.25
= 11
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Example: “Dart” board.

Recall that
0 fory <0
Fy(y)=Prly <y]=< y? for0<y<i
1 fory >1
0 fory <0
fy(y)=Fy(y)=< 2y for0<y<f1
0 fory > 1

The cumulative distribution function (cdf) and probability
distribution function (pdf) give full information.
Use whichever is convenient.
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The exponential distribution with parameter A > 0 is defined by
fx(x) = A e 1{x > 0}

0,

Fx(x) = { 1 e,
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Note that Pr[X > t] = e *!for t > 0.

35;

25}

15}

05t

if x<0
if x>0

on

Fxia)

Fix(x)




Some Properties



Some Properties

1. Expo is memoryless.



Some Properties

1. Expo is memoryless. Let X = Expo(1).



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,



Some Properties
1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX>t+s|X>s] =



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]

PriX>t+s|X>s] = PrIX> 5]



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]
e—)L(t+s)

e*lS

PriX>t+s|X>s] =



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]
e—)L(t+s)

= 76715 = e

PriX>t+s|X>s] =

—At



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo.



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(1) and Y = aX for some a > 0.



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PriY>t] =



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrilY >t = PrlaX>1{]=



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t = PrlaX>t=Pr[X>1t/q]



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t] = PrlaX >t =Pr[X>1t/q]
e Mt/a) _ g—(A/a)t _



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e~ At+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t] = PrlaX >t =Pr[X>1t/q]
e M/a) — =X/t _ pr(7 > ] for Z = Expo(A/a).



Some Properties

1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then

PrlY >t = PrlaX>t=Pr[X>1t/q]
e M/a) — =X/t _ pr(7 > ] for Z = Expo(A/a).

Thus, ax Expo(1) = Expo(A/a).
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1. Expo is memoryless. Let X = Expo(1). Then, for s,t > 0,

PriX > t+59]
Pr(X > s]

e—)L(t+s)

= Toas €

= Pr[X>1{].

PriX>t+s|X>s] =

—At

‘Used is a good as new.
2. Scaling Expo. Let X = Expo(A) and Y = aX for some a> 0. Then
PrlY >t = PrlaX>t=Pr[X>1t/q]
e M/a) — =X/t _ pr(7 > ] for Z = Expo(A/a).
Thus, ax Expo(1) = Expo(A/a).
Also, Expo(L) = 1 Expo(1).
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defined as o
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Justification: Say X = né w.p. fx(nd)éd for ne Z. Then,

E[X] =Y (n8)Pr[X = nd] =Y (nd)fx(n8)s = /_oo xfx(x)dx.

n n
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Recall the integration by parts formula:

b R
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Hence, E[X] = 1.
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’Continuous Probability ‘

. pdf: PriX e (x,x+8]] = fx(x)d.

CDF: PriX < x] = Fx(x) = J*. fx(y)dy.
Ula, b], Expo(1), target.

Expectation: E[X] = [ xfx(x)dx.
Expectation is linear.



