CS 70: Discrete Math and Probability

Happy Monday!

CS 70: Discrete Math and Probability

Happy Monday!

Today:

CS 70: Discrete Math and Probability

Happy Monday!

Today:

Finish Note 2.

Begin Induction.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Proof:

▶ Assume finitely many primes: $p_1,...,p_k$.

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p₁,...,p_k.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

ightharpoonup q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

Theorem: There are infinitely many primes.

- Assume finitely many primes: p₁,...,p_k.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- ightharpoonup p | q x

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \leq x-q$

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $\Rightarrow p|q-x \implies p \le x-q=1.$

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup p > p | q x \implies p \le x q = 1$. That is, p | 1.

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \le x-q=1$. That is, p|1.
- ▶ so $p \le 1$.

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \le x-q=1$. That is, p|1.
- ▶ so $p \le 1$. (Contradicts R.)

Theorem: There are infinitely many primes.

Proof:

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p(p > 1 = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|q-x \implies p \le x-q=1$. That is, p|1.
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup p | q x \implies p \le x q = 1$. That is, p | 1.
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Did we prove?

▶ "The product of the first *k* primes plus 1 is prime."

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- ► The chain of reasoning started with a false statement.

Consider example..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- ► The chain of reasoning started with a false statement.

Consider example..

ightharpoonup 2 imes 3 imes 5 imes 7 imes 11 imes 13 + 1 = 30031 = 59 imes 509

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- ► The chain of reasoning started with a false statement.

Consider example..

- ightharpoonup 2 imes 3 imes 5 imes 7 imes 11 imes 13 + 1 = 30031 = 59 imes 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- ightharpoonup 2 imes 3 imes 5 imes 7 imes 11 imes 13 + 1 = 30031 = 59 imes 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.
- ▶ Proof assumed no primes *in between* p_k and q.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible.
Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: There exist irrational x and y such that x^y is rational.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^y =$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

•

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

•

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

•

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

Theorem: 3 = 4

Theorem: 3 = 4

Proof: Assume 3 = 4.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Don't assume what you want to prove!

Be really careful!

Theorem: 1=2

Proof:

Be really careful!

Theorem: 1 = 2

Proof: For x = y, we have

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

 $x(x - y) = (x + y)(x - y)$

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y)x = (x + y)

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x
```

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

x = 2x
```

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

x = 2x
```

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

1 = 2
```

Dividing by zero is no good.

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x
```

Dividing by zero is no good.

1 = 2

Also: Multiplying inequalities by a negative.

```
Theorem: 1 = 2
```

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

 $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Direct Proof:

Direct Proof:

To Prove: $P \Longrightarrow Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...

Principle of Induction.

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n+1)$$

And we get...

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

...Yes for 0,

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

...Yes for 0, and we can conclude

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

... Yes for 0, and we can conclude Yes for 1...

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

...Yes for 0, and we can conclude Yes for 1... and we can conclude

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

...Yes for 0, and we can conclude Yes for 1... and we can conclude Yes for 2...

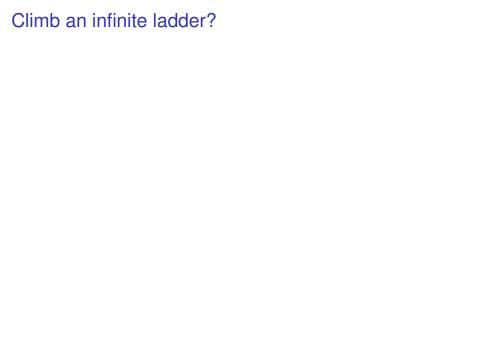
Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

...Yes for 0, and we can conclude Yes for 1... and we can conclude Yes for 2......

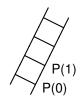

Principle of Induction.

$$P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1)$$

And we get...

$$(\forall n \in \mathbb{N})P(n)$$
.

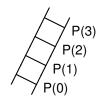
...Yes for 0, and we can conclude Yes for 1... and we can conclude Yes for 2......

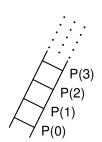


P(0)

$$\forall k, P(k) \Longrightarrow P(k+1)$$

$$P(0) \Rightarrow P(k+1)$$

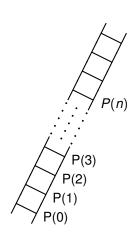

$$P(0) \Rightarrow P(1) \Rightarrow P(2)$$



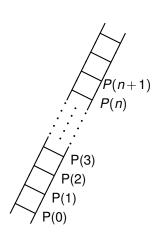
$$P(0)$$

$$\forall k, P(k) \Longrightarrow P(k+1)$$

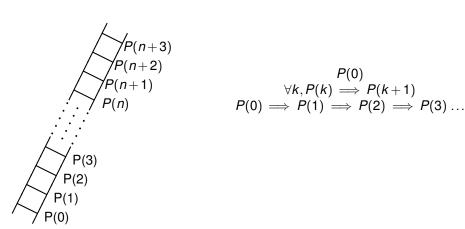
$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3)$$

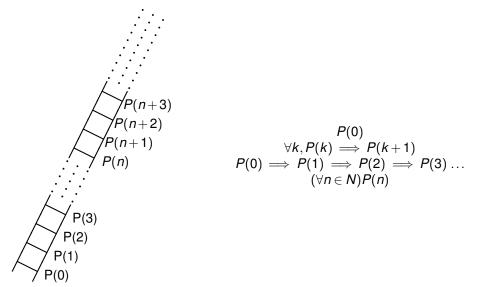


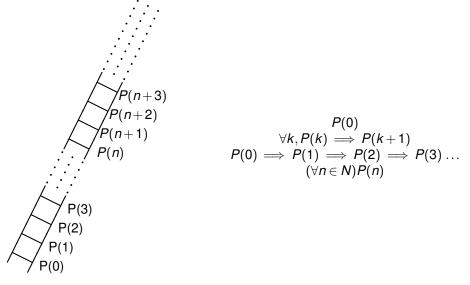
$$P(0)$$

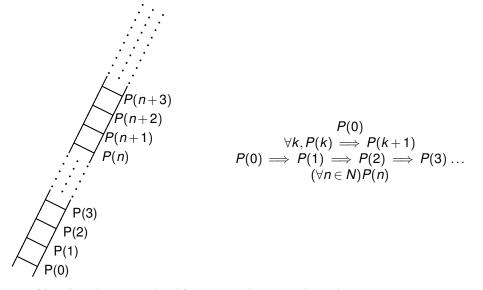

$$\forall k, P(k) \Longrightarrow P(k+1)$$

$$P(0) \Longrightarrow P(1) \Longrightarrow P(2) \Longrightarrow P(3) \dots$$




$$P(0) \Rightarrow P(k+1)$$


$$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$


$$P(0) \Rightarrow P(k+1) \Rightarrow P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \dots$$

Your favorite example of forever..

Your favorite example of forever..or the natural numbers...

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof:

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3 | (n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3 | (n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1)$$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

$$= k^3 + 3k^2 + 2k$$

$$= (k^3 - k) + 3k^2 + 3k$$
 Subtract/add k

$$= 3q + 3(k^2 + k)$$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3 | (n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over ×

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over \times

Or
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Longrightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over \times

Or
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
.

 $(q+k^2+k)$ is integer (closed under addition and multiplication).

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over \times

Or
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
.

 $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over \times

Or
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
.

 $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3.

Thus, $(\forall k \in N)P(k) \implies P(k+1)$

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over \times

Or
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
.

 $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3.

Thus, $(\forall k \in N)P(k) \implies P(k+1)$

Thus, theorem holds by induction.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.

Base Case: P(0) is " $(0^3) - 0$ " is divisible by 3. Yes!

Induction Step: $(\forall k \in N)$, $P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$$

= $k^3 + 3k^2 + 2k$
= $(k^3 - k) + 3k^2 + 3k$ Subtract/add k
= $3q + 3(k^2 + k)$ Induction Hyp. Factor.
= $3(q + k^2 + k)$ (Un)Distributive + over \times

Or
$$(k+1)^3 - (k+1) = 3(q+k^2+k)$$
.

 $(q+k^2+k)$ is integer (closed under addition and multiplication). $\implies (k+1)^3 - (k+1)$ is divisible by 3.

Thus, $(\forall k \in N)P(k) \implies P(k+1)$

Thus, theorem holds by induction.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color.

(Couldn't find a map where they did though.)

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color.

(Couldn't find a map where they did though.)

Quick Test: Which states?

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color.

(Couldn't find a map where they did though.)

Quick Test: Which states? Utah.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

States connected at a point, can have same color.

(Couldn't find a map where they did though.)

Quick Test: Which states? Utah. Colorado.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: "Four corners".

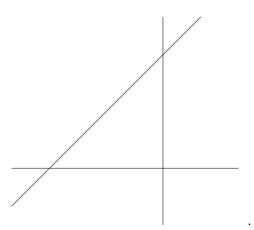
States connected at a point, can have same color.

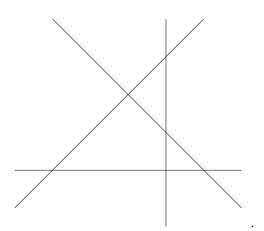
(Couldn't find a map where they did though.)

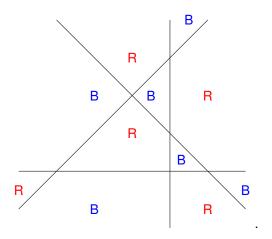
Quick Test: Which states? Utah. Colorado. New Mexico.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

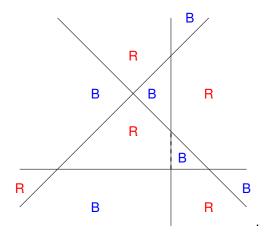
Check Out: "Four corners".

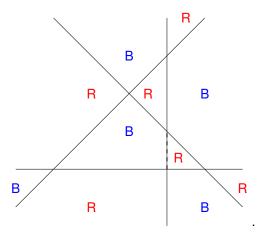

States connected at a point, can have same color.


(Couldn't find a map where they did though.)


Quick Test: Which states? Utah. Colorado. New Mexico. Arizona.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

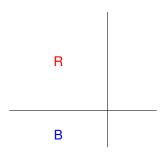


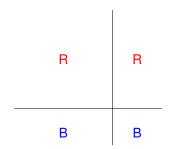


Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

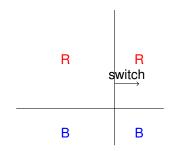
Fact: Swapping red and blue gives another valid colors.

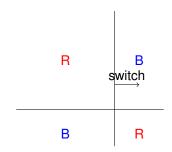
Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

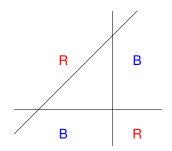

Fact: Swapping red and blue gives another valid colors.

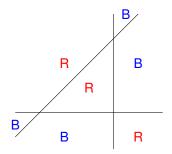

Base Case.

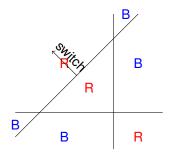
R ______B

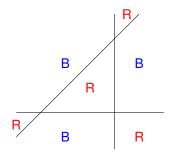

Base Case.

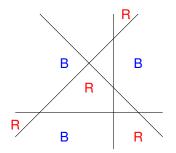

1. Add line.

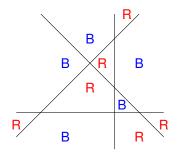

- 1. Add line.
- 2. Get inherited color for split regions

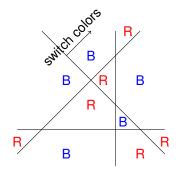

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

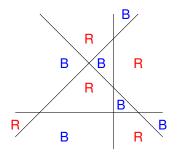

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

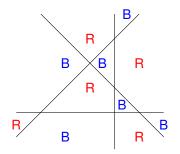

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)


- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

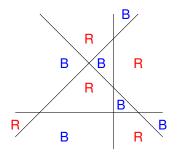

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)


- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)


- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)


- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)



- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

- 1. Add line.
- 2. Get inherited color for split regions
- 3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.

- 1. Add line.
- 2. Get inherited color for split regions
- Switch on one side of new line.(Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.

Add line. Inherit Colors. Switch colors on one side of line.

Add line.
Inherit Colors.
Switch colors on one side of line.

For any "edge".

Add line.
Inherit Colors.
Switch colors on one side of line.

For any "edge". Ok before switch.

Add line.

Inherit Colors.

Switch colors on one side of line.

For any "edge".

Ok before switch. Still ok, by "fact".

Add line.

Inherit Colors.

Switch colors on one side of line.

For any "edge".

Ok before switch. Still ok, by "fact".

Not ok before switch, must be on new line.

Add line.

Inherit Colors.

Switch colors on one side of line.

For any "edge".

Ok before switch. Still ok, by "fact".

Not ok before switch, must be on new line.

Switch changes one side,

Add line.

Inherit Colors.

Switch colors on one side of line.

For any "edge".

Ok before switch. Still ok, by "fact".

Not ok before switch, must be on new line.

Switch changes one side,

So now two sides have different colors.

Proofs: Direct, By Contraposition, By Cases, By Contradiction.

Proofs: Direct, By Contraposition, By Cases, By Contradiction. Induction:

 $\label{proof:birect} Proofs: \ Direct, \ By \ Contraposition, \ By \ Cases, \ By \ Contradiction.$

Induction:

First Step

 $\label{proof:birect} Proofs: \ Direct, \ By \ Contraposition, \ By \ Cases, \ By \ Contradiction.$

Induction:

First Step (Base case).

Proofs: Direct, By Contraposition, By Cases, By Contradiction.

Induction:

First Step (Base case).

Can step up the ladder of naturals.

Proofs: Direct, By Contraposition, By Cases, By Contradiction.

Induction:

First Step (Base case).

Can step up the ladder of naturals. (Induction Step.)

Proofs: Direct, By Contraposition, By Cases, By Contradiction.

Induction:

First Step (Base case).

Can step up the ladder of naturals. (Induction Step.)

Get to be on step *k*.

Proofs: Direct, By Contraposition, By Cases, By Contradiction.

Induction:

First Step (Base case).

Can step up the ladder of naturals. (Induction Step.)

Get to be on step k. (Use induction hypothesis.)

Proofs: Direct, By Contraposition, By Cases, By Contradiction.

Induction:

First Step (Base case).

Can step up the ladder of naturals. (Induction Step.)

Get to be on step *k*. (Use induction hypothesis.)

See you on Wednesday!