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defined as
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Justifications: Think of the discrete approximations of the
continuous RVs.
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defined as

varlX] = E((X - E(X))?) = E(X?) — (E(X))%.

Example 1: X = U[0,1]. Then
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You break a stick at two points chosen independently uniformly at
random.

What is the probability you can make a triangle with the three pieces?
Let X, Y be the two break points

A, B O along the [0, 1] stick.

’ i You can make a triangle if

A<B+C,B<A+C,and
C<A+B.

If X <Y, this means
X<05Y<X+05Y>0.5. This
is the blue triangle.

If X > Y, we get the red triangle,
by symmetry.

Thus, Pr[make triangle] = 1/4.
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The geometric and exponential distributions are similar. They are
both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where
N> 1.

Let X be the time until the first H.
Fact: X ~ Expo(p).
Analysis: Note that

PriX >t ~ Prffirst Nt flips are tails]

= (1- M~ exp{—pt}.

Indeed, (1 — &)V ~ exp{—a}.
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