CS70: Lecture 31.

Gaussian RVs and CLT

CS70: Lecture 31.

Gaussian RVs and CLT

CS70: Lecture 31.

Gaussian RVs and CLT

- 1. Review: Continuous Probability: Geometric and Exponential
- 2. Normal Distribution
- 3. Central Limit Theorem
- 4. Examples

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.

1. pdf:
$$Pr[X \in (x, x + \delta]] = f_X(x)\delta$$
.
2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y)dy$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.

- 1. pdf: $Pr[X \in (x, x + \delta]] = f_X(x)\delta$.
- 2. CDF: $Pr[X \le x] = F_X(x) = \int_{-\infty}^x f_X(y) dy$.
- 3. U[a,b], $Expo(\lambda)$, target.
- 4. Expectation: $E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$.
- 5. Expectation of function: $E[h(X)] = \int_{-\infty}^{\infty} h(x) f_X(x) dx$.
- 6. Variance: $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$.
- 7. Variance of Sum of Independent RVs: If X_n are pairwise independent, $var[X_1 + \dots + X_n] = var[X_1] + \dots + var[X_n]$

The geometric and exponential distributions are similar.

The geometric and exponential distributions are similar. They are both memoryless.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N,

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact:

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis:

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

 $Pr[X > t] \approx Pr[first Nt flips are tails]$

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$Pr[X > t] \approx Pr[\text{first } Nt \text{ flips are tails}]$$

= $(1 - \frac{p}{N})^{Nt}$

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$\begin{aligned} \Pr[X > t] &\approx & \Pr[\text{first } Nt \text{ flips are tails}] \\ &= & (1 - \frac{p}{N})^{Nt} \approx \exp\{-\rho t\}. \end{aligned}$$

The geometric and exponential distributions are similar. They are both memoryless.

Consider flipping a coin every 1/N second with Pr[H] = p/N, where $N \gg 1$.

Let X be the time until the first H.

Fact: $X \approx Expo(p)$.

Analysis: Note that

$$\begin{aligned} & Pr[X > t] \approx Pr[\text{first } Nt \text{ flips are tails}] \\ & = (1 - \frac{p}{N})^{Nt} \approx \exp\{-pt\}. \end{aligned}$$

Indeed, $(1 - \frac{a}{N})^N \approx \exp\{-a\}$.

Minimum of Independent Expo.

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$.

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

 $Pr[min{X, Y} > u] =$

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

 $Pr[min\{X, Y\} > u] = Pr[X > u, Y > u] =$

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

 $Pr[min{X, Y} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$
$$= e^{-\lambda u} \times e^{-\mu u} =$$

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$
$$= e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}.$$

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$
$$= e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}.$$

This shows that $\min\{X, Y\} = Expo(\lambda + \mu)$.

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$
$$= e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}.$$

This shows that $\min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.
Minimum of Independent Expo Random Variables

Minimum of Independent *Expo*. Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent RVs.

Recall that $Pr[X > u] = e^{-\lambda u}$. Then

$$Pr[\min\{X,Y\} > u] = Pr[X > u, Y > u] = Pr[X > u]Pr[Y > u]$$
$$= e^{-\lambda u} \times e^{-\mu u} = e^{-(\lambda + \mu)u}.$$

This shows that $\min\{X, Y\} = Expo(\lambda + \mu)$.

Thus, the minimum of two independent exponentially distributed RVs is exponentially distributed.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$.

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$. Calculate E[Z].

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$. Calculate E[Z]. We compute f_Z , then integrate. One has

Pr[Z < z] = Pr[X < z, Y < z]

$$Pr[Z < z] = Pr[X < z, Y < z] = Pr[X < z]Pr[Y < z]$$

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = \end{aligned}$$

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z} \end{aligned}$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max{\{X, Y\}}$. Calculate E[Z]. We compute f_Z , then integrate.

One has

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z} \end{aligned}$$

Thus,

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Hence,

$$E[Z] = \int_0^\infty z f_Z(z) dz =$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$. Calculate E[Z]. We compute f_Z , then integrate.

One has

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z} \end{aligned}$$

Thus,

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Hence,

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}$$

Let $X = Expo(\lambda)$ and $Y = Expo(\mu)$ be independent. Define $Z = \max\{X, Y\}$. Calculate E[Z]. We compute f_Z , then integrate.

One has

$$\begin{aligned} \Pr[Z < z] &= \Pr[X < z, Y < z] = \Pr[X < z] \Pr[Y < z] \\ &= (1 - e^{-\lambda z})(1 - e^{-\mu z}) = 1 - e^{-\lambda z} - e^{-\mu z} + e^{-(\lambda + \mu)z} \end{aligned}$$

Thus,

$$f_Z(z) = \lambda e^{-\lambda z} + \mu e^{-\mu z} - (\lambda + \mu) e^{-(\lambda + \mu)z}, \forall z > 0.$$

Hence,

$$E[Z] = \int_0^\infty z f_Z(z) dz = \frac{1}{\lambda} + \frac{1}{\mu} - \frac{1}{\lambda + \mu}$$

For any μ and σ , a **normal** (aka **Gaussian**)

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_{\rm Y}(y) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2}$$

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2}$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2}$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2}$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

Note: $Pr[|Y - \mu| > 1.65\sigma] = 10\%$;

For any μ and σ , a **normal** (aka **Gaussian**) random variable *Y*, which we write as $Y = \mathcal{N}(\mu, \sigma^2)$, has pdf

$$f_Y(y) = rac{1}{\sqrt{2\pi\sigma^2}} e^{-(y-\mu)^2/2\sigma^2}$$

Standard normal has $\mu = 0$ and $\sigma = 1$.

Table

STANDARD STATISTICAL TABLES

1. Areas under the Normal Distribution

0

2

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0,5040	0.5080	0.5120	0.5159	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7854
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8804	0.8830

Standard Normal Variable

X is a standard normal variable if

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}, \quad x \in \Re$$

Since f(x) = f(-x) and $\int_0^\infty x f_X(x) dx$ is finite, E[X] = 0.

Standard Normal Variable

$$var(X) = E[X^2] = \frac{1}{\sqrt{2\pi}} \int_0^\infty x^2 e^{\frac{-x^2}{2}} dx$$

Integration by parts, $du = e^{\frac{-x^2}{2}}$, $v = x^2$

$$var(X) = \frac{1}{\sqrt{2\pi}} (-xe^{\frac{-x^2}{2}})\Big|_{-\infty}^{\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\frac{-x^2}{2}} dx$$

= 0+1

Bell Curve with zero mean and unit variance.

Standard Normal Variable (You're not responsible for this!)

We need to show that

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx=1$$

Use a trick: Let the value of the integral be A. Then

$$A^{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dx dy$$

Now use polar co-ordinates.

$$A^{2} = \frac{1}{2\pi} \int_{0}^{\infty} \int_{0}^{2\pi} e^{-\frac{r^{2}}{2}} r d\theta dr$$
$$= \frac{1}{2\pi} \int_{0}^{\infty} 2\pi e^{-\frac{r^{2}}{2}} r dr$$

Substituting:

$$A^2 = -e^{\frac{r^2}{2}}]_0^\infty = 1$$

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}.$

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof: $f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$. Now,

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathcal{N}(\mu, \sigma^2).$$

Proof:
$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$$
. Now,
 $f_Y(y) = \frac{1}{\sigma} f_X(\frac{y-\mu}{\sigma})$

Theorem Let $X = \mathcal{N}(0, 1)$ and $Y = \mu + \sigma X$. Then

$$Y = \mathscr{N}(\mu, \sigma^2).$$

Proof:
$$f_X(x) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{x^2}{2}\}$$
. Now,
 $f_Y(y) = \frac{1}{\sigma} f_X(\frac{y-\mu}{\sigma})$
 $= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\{-\frac{(y-\mu)^2}{2\sigma^2}\}$.

Gaussian RV: Computing Probabilities

Example: Let the temperature of a city in the winter be X in Celsius. $X \sim N(2, 16)$. Find P(-2 < X < 6). Want to avoid computing the hairy integrals involved...Closed form of Normal CDF not available. Procedure:

• Convert to a standard normal: $\hat{X} = \frac{X-2}{4}$

2 Express in terms of probability problem of \hat{X} :

$$P(-2 < X < 6) = P(\frac{-2-2}{4} < \hat{X} < \frac{6-2}{4}) = P(-1 < \hat{X} < 1)$$

- **O** Look it up in a table of computed values of $F_{\hat{X}}(\hat{x})$ We want to find $P(\hat{X} < 1) - P(\hat{X} < -1) = \phi(1) - \phi(-1)$. Tables typically only list positive values, so $\phi(-1) = 1 - \phi(1)$ by symmetry.
- Answer: $2\phi(1) 1 =$

Note: $2\phi(k) - 1$ tells you how likely it is that the outcome is within k standard deviations. k = 2 : 0.9544;k=3: 0.9974

Central Limit Theorem

Central Limit Theorem

Central Limit Theorem

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Central Limit Theorem

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Suppose the X_i 's have expectation $\mu = E(X_i)$ and variance σ^2 .
Crown Jewel of Normal Distribution

Central Limit Theorem

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Suppose the X_i 's have expectation $\mu = E(X_i)$ and variance σ^2 .

Then the Expectation of A_n is

Crown Jewel of Normal Distribution

Central Limit Theorem

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Suppose the X_i 's have expectation $\mu = E(X_i)$ and variance σ^2 .

Then the Expectation of A_n is μ , and its variance is

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Suppose the X_i 's have expectation $\mu = E(X_i)$ and variance σ^2 .

Then the Expectation of A_n is μ , and its variance is σ^2/n .

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Suppose the X_i 's have expectation $\mu = E(X_i)$ and variance σ^2 .

Then the Expectation of A_n is μ , and its variance is σ^2/n .

Interesting question: What happens to the **distribution** of A_n as n gets large?

For any set of independent identically distributed (i.i.d.) random variables X_i , define $A_n = \frac{1}{n} \sum X_i$ to be the "running average" as a function of *n*.

Suppose the X_i 's have expectation $\mu = E(X_i)$ and variance σ^2 .

Then the Expectation of A_n is μ , and its variance is σ^2/n .

Interesting question: What happens to the **distribution** of A_n as n gets large?

Note: We are asking this for any arbitrary original distribution X_i!

Central Limit Theorem

Central Limit Theorem

Let X_1, X_2, \ldots be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$.

Central Limit Theorem

Let X_1, X_2, \ldots be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define

$$S_n := rac{A_n - \mu}{\sigma/\sqrt{n}} = rac{X_1 + \cdots + X_n - n\mu}{\sigma\sqrt{n}}.$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$\Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof:

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

$$E(S_n)$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

$$E(S_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu)$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

$$E(S_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu) = 0$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

Note:

$$E(S_n)=\frac{1}{\sigma/\sqrt{n}}(E(A_n)-\mu)=0$$

 $Var(S_n)$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

$$E(S_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu) = 0$$
$$Var(S_n) = \frac{1}{\sigma^2/n} Var(A_n)$$

Central Limit Theorem

Let $X_1, X_2, ...$ be i.i.d. with $E[X_1] = \mu$ and $var(X_1) = \sigma^2$. Define $S_n := \frac{A_n - \mu}{\sigma/\sqrt{n}} = \frac{X_1 + \dots + X_n - n\mu}{\sigma\sqrt{n}}.$

Then,

$$S_n \to \mathcal{N}(0,1), \text{as } n \to \infty.$$

That is,

$$Pr[S_n \leq \alpha] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-x^2/2} dx.$$

Proof: See EE126.

$$E(S_n) = \frac{1}{\sigma/\sqrt{n}}(E(A_n) - \mu) = 0$$
$$Var(S_n) = \frac{1}{\sigma^2/n} Var(A_n) = 1.$$

Implications of CLT

- The Distribution of S_n wipes out all the information in the original information except for μ and σ^2 .
- If there are large number of small and independent factors, the aggregate of these factors will be normally distributed.
 E.g. Noise.
- The Gaussian Distribution is very important many problems involve sums of iid random variables and the only thing one needs to know is the mean and variance.

Example: Guessing numbers

Alice picks 100 numbers uniformly from [0, 1]. Bob must guess the sum within 2. What is the probability he is right if he guesses 55? If X_i is Alice's i^{th} guess, it is difficult to calculate the CDF of $S_{100} = \sum_i X_i$. $E[S_n] = 50, \operatorname{var}(S_n) = 100/12$. So by the CLT, $\frac{S_{100}-50}{\sqrt{100/12}}$ is approx N(0, 1). Thus $P(53 \le S_{100} \le 57) \approx \phi(\frac{7}{2.887}) - \phi(\frac{3}{2.887}) = \phi(2.4247) - \phi(1.039)$ = .9925 - .9251 = 0.0649

Example: Counting Customers

A store has one cashier who can serve one customer at a time. The time taken to serve a customer $X \sim$ uniform on [1,5] minutes. What is the probability that at least 200 customers can be served in 8 hours?

We want
$$P(\sum_{i=1}^{200} X_i \le 480)$$
.
 $E[S_{200}] = 600$, $var(S_{200}) = 200 \ 16/12 = 800/3$.

$$P(200 \le \sum_{i=1}^{200} X_i \le 480) \approx \phi(\frac{480 - 600}{20\sqrt{2/3}}) - \phi(\frac{-400}{20\sqrt{2/3}})$$
$$= \phi(-6\sqrt{1.5}) - \phi(-20\sqrt{1.5}) = \phi(24.4949) - \phi(7.348).$$
$$P(\sum_{i=1}^{200} X_i \le 480) \approx 0$$

Inequalities: A Preview

Summary

Gaussian and CLT

1. Gaussian: $\mathcal{N}(\mu, \sigma^2)$: $f_X(x) = \dots$ "bell curve"

Summary

Gaussian and CLT

1. Gaussian: $\mathcal{N}(\mu, \sigma^2) : f_X(x) = \dots$ "bell curve" 2. CLT: X_n i.i.d. $\implies \frac{A_n - \mu}{\sigma/\sqrt{n}} \to \mathcal{N}(0, 1)$

Summary

Gaussian and CLT

1. Gaussian: $\mathcal{N}(\mu, \sigma^2) : f_X(x) = \dots$ "bell curve" 2. CLT: X_n i.i.d. $\implies \frac{A_n - \mu}{\sigma/\sqrt{n}} \to \mathcal{N}(0, 1)$