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Continuous Probability

1. pdf: Pr [X ∈ (x ,x +δ ]] = fX (x)δ .

2. CDF: Pr [X ≤ x ] = FX (x) =
∫ x
−∞

fX (y)dy .

3. U[a,b], Expo(λ ), target.

4. Expectation: E [X ] =
∫

∞

−∞
xfX (x)dx .

5. Expectation of function: E [h(X )] =
∫

∞

−∞
h(x)fX (x)dx .

6. Variance: var [X ] = E [(X −E [X ])2] = E [X 2]−E [X ]2.

7. Variance of Sum of Independent RVs: If Xn are pairwise
independent, var [X1 + · · ·+Xn] = var [X1]+ · · ·+var [Xn]
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Geometric and Exponential: Relationship - Recap

The geometric and exponential distributions are similar. They are
both memoryless.

Consider flipping a coin every 1/N second with Pr [H] = p/N, where
N� 1.

Let X be the time until the first H.

Fact: X ≈ Expo(p).

Analysis: Note that

Pr [X > t ] ≈ Pr [first Nt flips are tails]

= (1− p
N
)Nt ≈ exp{−pt}.

Indeed, (1− a
N )N ≈ exp{−a}.
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Minimum of Independent Expo Random Variables

Minimum of Independent Expo. Let X = Expo(λ ) and Y = Expo(µ)
be independent RVs.

Recall that Pr [X > u] = e−λu. Then

Pr [min{X ,Y}> u] = Pr [X > u,Y > u] = Pr [X > u]Pr [Y > u]

= e−λu×e−µu = e−(λ+µ)u.

This shows that min{X ,Y}= Expo(λ +µ).

Thus, the minimum of two independent exponentially distributed RVs
is exponentially distributed.
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Maximum of Two Exponentials

Let X = Expo(λ ) and Y = Expo(µ) be independent. Define
Z =max{X ,Y}.
Calculate E [Z ].

We compute fZ , then integrate.

One has

Pr [Z < z] = Pr [X < z,Y < z] = Pr [X < z]Pr [Y < z]

= (1−e−λz)(1−e−µz) = 1−e−λz −e−µz +e−(λ+µ)z

Thus,
fZ (z) = λe−λz +µe−µz − (λ +µ)e−(λ+µ)z ,∀z > 0.

Hence,

E [Z ] =
∫

∞

0
zfZ (z)dz =

1
λ
+

1
µ
− 1

λ +µ
.
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One has

Pr [Z < z] = Pr [X < z,Y < z] = Pr [X < z]Pr [Y < z]

= (1−e−λz)(1−e−µz) = 1−e−λz −e−µz +e−(λ+µ)z
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Normal (Gaussian) Distribution.
For any µ and σ , a normal (aka Gaussian)

random variable Y ,
which we write as Y = N (µ,σ2), has pdf

fY (y) =
1√

2πσ2
e−(y−µ)2/2σ2

.

Standard normal has µ = 0 and σ = 1.

Note: Pr [|Y −µ|> 1.65σ ] = 10%;Pr [|Y −µ|> 2σ ] = 5%.
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Standard Normal Variable (You're not responsible for this!) 

We need to show that 
1 

J

oo x2 

r,:c e-2 dx = 1
V 27T -oo 

Use a trick: Let the value of the integral be A. Then 

A2 = - e--2-dxdy 
1 

J

oo 
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oo x2 +y2 

27T -
(X) 

-
(X) 

Now use polar co-ordinates. 

Substituting: 

A2 = _!_ f
00

(
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e-,: rd0dr 
27T lo lo

2 r:2. 00 A = -e 2 ] 0 = 1 



Scaling and Shifting

Theorem Let X = N (0,1) and Y = µ +σX . Then

Y = N (µ,σ2).

Proof: fX (x) = 1√
2π

exp{− x2

2 }. Now,

fY (y) =
1
σ

fX (
y −µ

σ
)

=
1√

2πσ2
exp{− (y −µ)2

2σ2 }.
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Crown Jewel of Normal Distribution

Central Limit Theorem
For any set of independent identically distributed (i.i.d.) random
variables Xi , define An = 1

n ∑Xi to be the “running average” as a
function of n.

Suppose the Xi ’s have expectation µ = E(Xi) and variance σ2.

Then the Expectation of An is µ, and its variance is σ2/n.

Interesting question: What happens to the distribution of An as n
gets large?

Note: We are asking this for any arbitrary original distribution Xi !
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Central Limit Theorem

Central Limit Theorem

Let X1,X2, . . . be i.i.d. with E [X1] = µ and var(X1) = σ2. Define

Sn :=
An−µ

σ/
√

n
=

X1 + · · ·+Xn−nµ

σ
√

n
.

Then,
Sn→N (0,1),as n→ ∞.

That is,

Pr [Sn ≤ α]→ 1√
2π

∫
α

−∞

e−x2/2dx .

Proof: See EE126.

Note:

E(Sn) =
1

σ/
√

n
(E(An)−µ) = 0

Var(Sn) =
1

σ2/n
Var(An) = 1.
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Implications of CLT 

0 The Distribution of Sn   wipes out all the information 

in the original information except forµ and u2. 

0 If there are large number of small and independent factors, 

the aggregate of these factors will be normally distributed. 

E.g. Noise. 

O The Gaussian Distribution is very important - many problems 

involve sums of iid random variables and the only thing one 

needs to know is the mean and variance. 







Inequalities: A Preview
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Summary

Gaussian and CLT

1. Gaussian: N (µ,σ2) : fX (x) = ... “bell curve”

2. CLT: Xn i.i.d. =⇒ An−µ
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