CS70: Lecture 32.

Inequalities: Markov and Chebyshev

1. Review: Gaussian RV, CLT

2. Inequalities: Markov, Chebyshev

3. Examples

4. Confidence Intervals: Cheybshev Bound

Normal (Gaussian) Distribution.

For any 1 and o, a normal (aka Gaussian) random variable Y,
which we write as Y = .#'(u,6?), has pdf

1 2 2
) = L o r-npr2e?
v(¥) Sra?

Standard normal has y =0and o =1.
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Note: Pr[|Y — u| > 1.650] = 10%; Pr[|Y — | > 20] =5%.

Standard Normal Variable

Normal PDF f;(x) Normal CDF Fx(x)
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X is a standard normal variable if

2
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Since f(x) = f(—x) and [ xfx(x)dx is finite, E[X] = 0.
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1. Areas under the Normal Distribution

The table gives the cumulative probability
up to the standardised normal value z
l.e.

z
l _Lexp(-417) d2
P[2<z)=]/u
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Pl[3<z)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.5000 0.5040 0.5080 0.5120 0.5159 0.5199 0.5239 0.5279 0.5319 0.5359
0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

ceeoo
S8RES

0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7580 0.7611 0.7642 0.7673 0.7704 0.773¢ 0.7764 0.7794 0.7823 0.7854
0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

PSP e
oo

0.8413  0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 10,8599 0.8621
0.8643  0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8804 0.8830

e
o

Recap: Crown Jewel of Normal Distribution

Central Limit Theorem

For any set of independent identically distributed (i.i.d.) random
variables X;, define T, =Y X; to be the “total sum” as a function of n.

(and we can define A, = 1Y X; to be the “running average.”)
Suppose the X;’s have expectation u = E(X;) and variance 2.
Then the Expectation of T, is nu, and its variance is no?.

Interesting question: What happens to the distribution of 7, as n
gets large?

Note: We are asking this for any arbitrary original distribution X;!

Review: Central Limit Theorem

Central Limit Theorem
Let Xy, Xp, ... be i.i.d. with E[X;] = u and var(X;) = 62. Define

To—nu  Xi+--+Xp—nu

ovn | ovn
E(Sn) = m(E(Tn) —nu)=0

Var(Sy) = é Var(Tp)=1.

S =

Then,
Sp— A(0,1),a5 N — oo,

That is,

1 a 2
PriS,< a a—/ e */2dx.
[Sn < a] V2r )




Implications of CLT

@ The Distributions of S, and M, wipe out all the information
in the original information except for i and o2.

@ If there are large number of small and independent factors,
the aggregate of these factors will be normally distributed.
E.g. Noise.

© The Gaussian Distribution is very important — many problems
involve sums of iid random variables and the only thing one
needs to know is the mean and variance.

Example: Guessing numbers

Alice picks 100 numbers uniformly from [0, 1]. Bob must guess the
sum within 2. What is the probability he is right if he guesses 557
If X; is Alice’s ith guess, it is difficult to calculate the CDF of

S100 = > _; Xi-

E[S,] = 50, var(S,) = 100/12.

So by the CLT, \?% is approx N(0,1). Thus

P(53 S 5100 S 57) ~ (p(

7
2887 587

=.9925 — .9251 = 0.0649

) = ¢(2.4247) — $(1.039)

Example: Counting Customers

A store has one cashier who can serve one customer at a time.
The time taken to serve a customer X ~ uniform on [1,5] minutes.
What is the probability that at least 200 customers can be served
in 8 hours?

We want P(Z%ﬂ Xi < 480).

E[Sa00] = 600, var(Saop) = 200 16/12 = 800/3.

200

480 — 600 —400
P(200 < 3" X; < 480) ~ ¢ —6

( ; ) (20,/2/3) o 2/3)
= ¢(—6v15) — ¢(—20v/1.5) = $(24.4049) — ¢(7.348).

200
P> X <480)~0

i=1

Inequalities: An Overview

Distribution Markov Chebyshev
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Andrey Markov

Andrey (Andrei) Andreyevich
Markov

Andrey Markov is best known for his work on
stochastic processes. A primary subject of his
research later became known as Markov
chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

Markov was an atheist. In 1912 he protested
Leo Tolstoy’s excommunication from the
Russian Orthodox Church by requesting his
own excommunication. The Church complied
with his request.

Born 14 June 1856 N.S.
Ryazan, Russian Empire
Died 20 July 1922 (aged 66)

Petrograd, Russian SFSA

Markov Inequality

If X can only take non-negative values then
px > 2 < EX
a

for all a > 0.

This inequality makes no assumptions on the existence of variance
and so it can't be very strong for typical distributions. In fact, it is
quite weak.




Markov Inequality

Example: X is the height of a random adult in Berkeley. If
E[X] = 68 inches, the Markov Inequality says that

68
< —=0.
P(X > 144) < 77 = 0.47

On the other hand since it is general, we can try to see what
happens to it as we add more assumptions on the distribution.
Think of this inequality as being the building block for others...

Markov’s inequality (General Form)

The inequality is named after Andrey Markov, although it appeared earlier in
the work of Pafnuty Chebyshev. It should be (and is sometimes) called
Chebyshev’s first inequality.

Theorem Markov’s Inequality

Assume f: R — [0,<0) is nondecreasing. Then,

E[f(X)]
f(a)

PriX >a] < , for all a such that f(a) > 0.

Proof:

Observe that )
>al< -
1H{X>a} < 7(a)
Indeed, if X < a, the inequality reads 0 < f(X)/f(a), which holds
since f(-) > 0. Also, if X > a, it reads 1 < f(X)/f(a), which holds since
f(-) is nondecreasing.

Taking the expectation yields the inequality, because expectation is
monotone. O

A picture

fla)l{X = a}

a

F@UX > a} < f(z) = YX 2 a} < 4';(()*'))
Jla
= PrlX = (f[ Elr'['\‘:”
fla)

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

var[X]y for all a> 0.

Pr[|X — E[X]| > a] < 2

Proof: Let Y = |X — E[X]| and f(y) = y2. Then,

E[f(Y)] var[X]
>al < = .
PriY > a < 7(a) 2
O
This result confirms that the variance measures the “deviations
from the mean.”

Chebyshev Inequality

If X is a random variable with finite mean and variance o2, then

2
PIX-EX][z )< =
for all ¢ > 0.
Also, letting ¢ = ko
1
K2

P(X — EX]| > ko) <

Example: X is the height of a random adult in Berkeley. If
E[X] = 68 inches, and ai = 49, the Chebyshev Inequality says
that

89 0.0084

< — < =
P(X > 144) < P(|X — 68| > 76) < Gk




Example: Random Walk

Starting at the origin, | flip a coin 10,000 times: on each flip, if it
is heads | step forward; if it is tails | step backward. Prob of heads
is 0.5. Estimate the prob that | will be greater than 400 steps away
from the origin.

For now let’s say the coin is tossed n times. Let X; = 1 if toss / is
heads and —1 otherwise.

E[Xi] = 0 and E[X?] =1 so var(X;) = 1

Let X =>"; Xi. E[X] =0 and var(X) = n. We want |X| since
that's the magnitude of the distance.

Chebyshev says:

1
PUXI > kvi) < 5
1
rd
So, the prob | am more than 400 steps away is less than %.

P(X| > 100k) <

Chebyshev Inequality

Example: We want to estimate E[X] by measuring random adults
and computing the average height (M,). How many should we
measure to ensure that the estimate is within 1 inch of E[X] with
probability 0.99? Assume that ni = 36.

var(My,) = 3¢, We want

P(IM, — E[M,]| < 1) = 1= P(|M, — E[M,]] > 1) > 0.99

P(|M, — E[M,]| > 1) <0.01
E[M,] = E[X], so Chebyshev tells us that

P(M, - EX)| 2 1) < 2
n
36
5 S.01= n > 3600.

In general to have 0.99 confidence that one is within ¢ of the
2
mean: n > L'COZL.

Fraction of H’s
Here is a classical application of Chebyshev’s inequality.

How likely is it that the fraction of H’s differs from 50%?

Let X,y = 1 if the m-th flip of a fair coin is H and X, =0
otherwise.
Define

Mn:X1+"'+Xn

,forn>1.
We want to estimate

Pr[|M,—0.5| > 0.1] = Pr[M, < 0.4 or M, > 0.6].
By Chebyshey,

Pr[|M,—0.5|>0.1] < V(ao'_[f)”gl =100var[M,].

Now,
var[My] = % (var[Xi]+ -+ var{Xa]) = Lvar[Xi] < £5.
Var(X;) = p(1—Ip) < (5)(5) = §

Fraction of H’s

X+ X

M, " forn>1.
n

Pr{|[M,—0.5| > 0.1] < %

For n= 1,000, we find that this probability is less than 2.5%.
As n — oo, this probability goes to zero.
In fact, for any € > 0, as n — o, the probability that the fraction
of Hs is within € > 0 of 50% approaches 1:

Pr[|M,—0.5| < €] — 1.

This is an example of the (Weak) Law of Large Numbers.
We will address WLLN next time.

Summary

Inequalities: Markov and Chebyshev

1. Inequalities: Markov and Chebyshev Tail Bounds
2. Confidence Intervals: Chebyshev Bounds




